These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36768758)

  • 21. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice.
    Liu J; Liao W; Nie B; Zhang J; Xu W
    Plant J; 2021 May; 106(3):706-719. PubMed ID: 33570751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation.
    Ai P; Sun S; Zhao J; Fan X; Xin W; Guo Q; Yu L; Shen Q; Wu P; Miller AJ; Xu G
    Plant J; 2009 Mar; 57(5):798-809. PubMed ID: 18980647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses.
    Singh A; Kumar P; Gautam V; Rengasamy B; Adhikari B; Udayakumar M; Sarkar AK
    Sci Rep; 2016 Dec; 6():39266. PubMed ID: 28000793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.).
    Shen C; Wang S; Zhang S; Xu Y; Qian Q; Qi Y; Jiang de A
    Plant Cell Environ; 2013 Mar; 36(3):607-20. PubMed ID: 22913536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcription factor OsNAC016 negatively regulates phosphate-starvation response in rice.
    Sun Y; Wu Q; Xie Z; Huang J
    Plant Sci; 2023 Apr; 329():111618. PubMed ID: 36738935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice.
    Jia H; Ren H; Gu M; Zhao J; Sun S; Zhang X; Chen J; Wu P; Xu G
    Plant Physiol; 2011 Jul; 156(3):1164-75. PubMed ID: 21502185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine characterization of OsPHO2 knockout mutants reveals its key role in Pi utilization in rice.
    Cao Y; Yan Y; Zhang F; Wang HD; Gu M; Wu XN; Sun SB; Xu GH
    J Plant Physiol; 2014 Feb; 171(3-4):340-8. PubMed ID: 24268791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons.
    Secco D; Baumann A; Poirier Y
    Plant Physiol; 2010 Mar; 152(3):1693-704. PubMed ID: 20081045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Knockdown of OsSAE1a affects the growth and development and phosphate homeostasis in rice.
    Pei W; Jain A; Zhao G; Feng B; Xu D; Wang X
    J Plant Physiol; 2020 Dec; 255():153275. PubMed ID: 33161338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice.
    Zhang F; Sun Y; Pei W; Jain A; Sun R; Cao Y; Wu X; Jiang T; Zhang L; Fan X; Chen A; Shen Q; Xu G; Sun S
    Plant J; 2015 May; 82(4):556-69. PubMed ID: 25702710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of OsPHR3 improves growth traits and facilitates nitrogen use efficiency under low phosphate condition.
    Sun Y; Hu Z; Wang X; Shen X; Hu S; Yan Y; Kant S; Xu G; Xue Y; Sun S
    Plant Physiol Biochem; 2021 Sep; 166():712-722. PubMed ID: 34214781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice.
    Mehra P; Pandey BK; Giri J
    Plant Biotechnol J; 2017 Aug; 15(8):1054-1067. PubMed ID: 28116829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice.
    Meng Q; Zhang W; Hu X; Shi X; Chen L; Dai X; Qu H; Xia Y; Liu W; Gu M; Xu G
    Plant J; 2020 Dec; 104(5):1269-1284. PubMed ID: 32996185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.
    Lu G; Coneva V; Casaretto JA; Ying S; Mahmood K; Liu F; Nambara E; Bi YM; Rothstein SJ
    Plant J; 2015 Sep; 83(5):913-25. PubMed ID: 26213119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters.
    Yue W; Ying Y; Wang C; Zhao Y; Dong C; Whelan J; Shou H
    Plant J; 2017 Jun; 90(6):1040-1051. PubMed ID: 28229491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice.
    Zhang L; Hu B; Li W; Che R; Deng K; Li H; Yu F; Ling H; Li Y; Chu C
    New Phytol; 2014 Mar; 201(4):1183-1191. PubMed ID: 24491113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice.
    Yi K; Wu Z; Zhou J; Du L; Guo L; Wu Y; Wu P
    Plant Physiol; 2005 Aug; 138(4):2087-96. PubMed ID: 16006597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery.
    Secco D; Jabnoune M; Walker H; Shou H; Wu P; Poirier Y; Whelan J
    Plant Cell; 2013 Nov; 25(11):4285-304. PubMed ID: 24249833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice.
    Jia H; Zhang S; Wang L; Yang Y; Zhang H; Cui H; Shao H; Xu G
    J Exp Bot; 2017 Nov; 68(18):5057-5068. PubMed ID: 29036625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.