These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36768765)

  • 1. CRISPR/Cas9-Targeted Disruption of Two Highly Homologous
    Nikolić I; Samardžić J; Stevanović S; Miljuš-Đukić J; Milisavljević M; Timotijević G
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Transcriptomic Responses to Oxidative Stress: Contrasting Wild-Type Arabidopsis Seedlings with
    Nikolić I; Milisavljević M; Timotijević G
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38927997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsically disordered protein AtDSS1(V) participates in plant defense response to oxidative stress.
    Nikolić IP; Nešić SB; Samardžić JT; Timotijević GS
    Protoplasma; 2021 Jul; 258(4):779-792. PubMed ID: 33404921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana.
    Li P; Li X; Jiang M
    Mol Biol Rep; 2021 Aug; 48(8):5821-5832. PubMed ID: 34351541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing.
    Ryder P; McHale M; Fort A; Spillane C
    Plant Cell Rep; 2017 Jun; 36(6):1005-1008. PubMed ID: 28289885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in
    Feng Z; Zhang Z; Hua K; Gao X; Mao Y; Botella JR; Zhu JK
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1.
    Dray E; Siaud N; Dubois E; Doutriaux MP
    Plant Physiol; 2006 Mar; 140(3):1059-69. PubMed ID: 16415210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants.
    Osakabe Y; Watanabe T; Sugano SS; Ueta R; Ishihara R; Shinozaki K; Osakabe K
    Sci Rep; 2016 May; 6():26685. PubMed ID: 27226176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of a susceptibility gene (HIPP27) in the Arabidopsis thaliana-Meloidogyne incognita pathosystem by using a genome editing strategy.
    Dutta TK; Vashisth N; Ray S; Phani V; Chinnusamy V; Sirohi A
    BMC Plant Biol; 2023 Aug; 23(1):390. PubMed ID: 37563544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9 multiplex genome editing of the hydroxyproline-O-galactosyltransferase gene family alters arabinogalactan-protein glycosylation and function in Arabidopsis.
    Zhang Y; Held MA; Kaur D; Showalter AM
    BMC Plant Biol; 2021 Jan; 21(1):16. PubMed ID: 33407116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis.
    Zhang Z; Mao Y; Ha S; Liu W; Botella JR; Zhu JK
    Plant Cell Rep; 2016 Jul; 35(7):1519-33. PubMed ID: 26661595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 edited
    Wenjing W; Chen Q; Singh PK; Huang Y; Pei D
    Plant Signal Behav; 2020 Dec; 15(12):1816321. PubMed ID: 32936726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pKAMA-ITACHI Vectors for Highly Efficient CRISPR/Cas9-Mediated Gene Knockout in Arabidopsis thaliana.
    Tsutsui H; Higashiyama T
    Plant Cell Physiol; 2017 Jan; 58(1):46-56. PubMed ID: 27856772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean.
    Bao A; Chen H; Chen L; Chen S; Hao Q; Guo W; Qiu D; Shan Z; Yang Z; Yuan S; Zhang C; Zhang X; Liu B; Kong F; Li X; Zhou X; Tran LP; Cao D
    BMC Plant Biol; 2019 Apr; 19(1):131. PubMed ID: 30961525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential application of genome editing by using CRISPR/Cas9, and its engineered and ortholog variants for studying the transcription factors involved in the maintenance of phosphate homeostasis in model plants.
    Jyoti A; Kaushik S; Srivastava VK; Datta M; Kumar S; Yugandhar P; Kothari SL; Rai V; Jain A
    Semin Cell Dev Biol; 2019 Dec; 96():77-90. PubMed ID: 30951893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Construction of Multiplexed CRISPR-Cas9 Systems for Plant Genome Editing.
    Lowder L; Malzahn A; Qi Y
    Methods Mol Biol; 2017; 1578():291-307. PubMed ID: 28220435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clarification of the dispensability of PDX1.2 for Arabidopsis viability using CRISPR/Cas9.
    Dell'Aglio E; Dalvit I; Loubéry S; Fitzpatrick TB
    BMC Plant Biol; 2019 Nov; 19(1):464. PubMed ID: 31684863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.