These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36768917)

  • 21. DeepFGRN: inference of gene regulatory network with regulation type based on directed graph embedding.
    Gao Z; Su Y; Xia J; Cao RF; Ding Y; Zheng CH; Wei PJ
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38581416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. COFFEE: Consensus Single Cell-Type Specific Inference for Gene Regulatory Networks.
    Lodi MK; Chernikov A; Ghosh P
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CNNGRN: A Convolutional Neural Network-Based Method for Gene Regulatory Network Inference From Bulk Time-Series Expression Data.
    Gao Z; Tang J; Xia J; Zheng CH; Wei PJ
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2853-2861. PubMed ID: 37267145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks.
    Shrivastava H; Zhang X; Song L; Aluru S
    J Comput Biol; 2022 Jan; 29(1):27-44. PubMed ID: 35050715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular and Intercellular Gene Regulatory Network Inference From Time-Course Individual RNA-Seq.
    Kashima M; Shida Y; Yamashiro T; Hirata H; Kurosaka H
    Front Bioinform; 2021; 1():777299. PubMed ID: 36303726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inferring gene regulatory networks from single-cell gene expression data via deep multi-view contrastive learning.
    Lin Z; Ou-Yang L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation.
    Jiang H; Wang Y; Yin C; Pan H; Chen L; Feng K; Chang Y; Sun H
    Comput Biol Med; 2024 Jun; 178():108690. PubMed ID: 38879931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TRaCE+: Ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments.
    Ud-Dean SM; Heise S; Klamt S; Gunawan R
    BMC Bioinformatics; 2016 Jun; 17():252. PubMed ID: 27342648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal design of gene knockout experiments for gene regulatory network inference.
    Ud-Dean SM; Gunawan R
    Bioinformatics; 2016 Mar; 32(6):875-83. PubMed ID: 26568633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data.
    Zhao M; He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC.
    Kumar N; Mishra B; Athar M; Mukhtar S
    Methods Mol Biol; 2021; 2328():171-182. PubMed ID: 34251625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SRGS: sparse partial least squares-based recursive gene selection for gene regulatory network inference.
    Guan J; Wang Y; Wang Y; Zhuang Y; Ji G
    BMC Genomics; 2022 Nov; 23(1):782. PubMed ID: 36451086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks.
    Zinati Y; Takiddeen A; Emad A
    Nat Commun; 2024 May; 15(1):4055. PubMed ID: 38744843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ModularBoost: an efficient network inference algorithm based on module decomposition.
    Li X; Zhang W; Zhang J; Li G
    BMC Bioinformatics; 2021 Mar; 22(1):153. PubMed ID: 33761871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boosting single-cell gene regulatory network reconstruction via bulk-cell transcriptomic data.
    Shu H; Ding F; Zhou J; Xue Y; Zhao D; Zeng J; Ma J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GMFGRN: a matrix factorization and graph neural network approach for gene regulatory network inference.
    Li S; Liu Y; Shen LC; Yan H; Song J; Yu DJ
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38261340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissecting and improving gene regulatory network inference using single-cell transcriptome data.
    Xue L; Wu Y; Lin Y
    Genome Res; 2023 Sep; 33(9):1609-1621. PubMed ID: 37580132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.