These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36769294)

  • 1. Unique Features of Satellite DNA Transcription in Different Tissues of
    Subirana JA; Messeguer X
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Satellites Are Transcribed as Part of the Non-Coding Genome in Eukaryotes and Bacteria.
    Subirana JA; Messeguer X
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High evolutionary turnover of satellite families in Caenorhabditis.
    Subirana JA; Albà MM; Messeguer X
    BMC Evol Biol; 2015 Oct; 15():218. PubMed ID: 26438045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata.
    Zhang W; Yi C; Bao W; Liu B; Cui J; Yu H; Cao X; Gu M; Liu M; Cheng Z
    Plant Physiol; 2005 Sep; 139(1):306-15. PubMed ID: 16113220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence, Chromatin and Evolution of Satellite DNA.
    Thakur J; Packiaraj J; Henikoff S
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33919233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Long Are Long Tandem Repeats? A Challenge for Current Methods of Whole-Genome Sequence Assembly: The Case of Satellites in
    Subirana JA; Messeguer X
    Genes (Basel); 2018 Oct; 9(10):. PubMed ID: 30332836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique Features of Tandem Repeats in Bacteria.
    Subirana JA; Messeguer X
    J Bacteriol; 2020 Oct; 202(21):. PubMed ID: 32839174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical relationship between satellite I and II DNA in centromeric regions of sheep chromosomes.
    D'Aiuto L; Barsanti P; Mauro S; Cserpan I; Lanave C; Ciccarese S
    Chromosome Res; 1997 Sep; 5(6):375-81. PubMed ID: 9364939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Tandem Repeat Satellite Sequences in Two Closely Related Caenorhabditis Species. Diminution of Satellites in Hermaphrodites.
    Subirana JA; Messeguer X
    Genes (Basel); 2017 Nov; 8(12):. PubMed ID: 29182550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression dynamics of repetitive DNA in early human embryonic development.
    Yandım C; Karakülah G
    BMC Genomics; 2019 May; 20(1):439. PubMed ID: 31151386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A satellite explosion in the genome of holocentric nematodes.
    Subirana JA; Messeguer X
    PLoS One; 2013; 8(4):e62221. PubMed ID: 23638010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two highly conserved transcribed regions in the 5S DNA repeats of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae.
    Nelson DW; Honda BM
    Nucleic Acids Res; 1989 Nov; 17(21):8657-67. PubMed ID: 2587214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome-specific alpha-satellite DNA from the centromere of chimpanzee chromosome 4.
    Haaf T; Willard HF
    Chromosoma; 1997 Sep; 106(4):226-32. PubMed ID: 9254724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives.
    Hall SE; Luo S; Hall AE; Preuss D
    Genetics; 2005 Aug; 170(4):1913-27. PubMed ID: 15937135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Satellites in the prokaryote world.
    Subirana JA; Messeguer X
    BMC Evol Biol; 2019 Sep; 19(1):181. PubMed ID: 31533616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplification and adaptation of centromeric repeats in polyploid switchgrass species.
    Yang X; Zhao H; Zhang T; Zeng Z; Zhang P; Zhu B; Han Y; Braz GT; Casler MD; Schmutz J; Jiang J
    New Phytol; 2018 Jun; 218(4):1645-1657. PubMed ID: 29577299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centromeric satellite DNA in the newt Triturus cristatus karelinii and related species: its distribution and transcription on lampbrush chromosomes.
    Baldwin L; Macgregor HC
    Chromosoma; 1985; 92(2):100-7. PubMed ID: 2988877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains.
    Hall SE; Kettler G; Preuss D
    Genome Res; 2003 Feb; 13(2):195-205. PubMed ID: 12566397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation and evolution of centromeric satellite repeats in Saccharum species.
    Huang Y; Ding W; Zhang M; Han J; Jing Y; Yao W; Hasterok R; Wang Z; Wang K
    Plant J; 2021 May; 106(3):616-629. PubMed ID: 33547688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.