BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36769367)

  • 21. Biodegradation of phenol and dyes with horseradish peroxidase covalently immobilized on functionalized RGO-SiO
    Vineh MB; Saboury AA; Poostchi AA; Ghasemi A
    Int J Biol Macromol; 2020 Dec; 164():4403-4414. PubMed ID: 32931826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A facile one-pot method to prepare peroxidase-like nanogel artificial enzymes for highly efficient and controllable catalysis.
    Shi H; Liu Y; Qu R; Li Y; Ma R; An Y; Shi L
    Colloids Surf B Biointerfaces; 2019 Feb; 174():352-359. PubMed ID: 30472621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermostable biocatalytic films of enzymes and polylysine on electrodes and nanoparticles in microemulsions.
    Guto PM; Kumar CV; Rusling JF
    Langmuir; 2008 Sep; 24(18):10365-70. PubMed ID: 18690734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of horseradish peroxidase immobilization onto functionalized superparamagnetic iron oxide nanoparticles as a biocatalyst for dye degradation.
    Keshta BE; Gemeay AH; Khamis AA
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):6633-6645. PubMed ID: 34455562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene oxide in cetyltrimethylammonium bromide (CTAB) reverse micelle: a befitting soft nanocomposite for improving efficiency of surface-active enzymes.
    Das K; Maiti S; Ghosh M; Mandal D; Das PK
    J Colloid Interface Sci; 2013 Apr; 395():111-8. PubMed ID: 23374433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Contribution of protein conformation to stereochemistry and reactivity of the active center of heme proteins and enzymes. The existence of horseradish peroxidase conformations and their possible role in the catalysis mechanism].
    Sharonov IuA; Pis'menskiĭ VF; Iarmola EG
    Mol Biol (Mosk); 1988; 22(6):1491-506. PubMed ID: 3252148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymatic cross-linking of α-lactalbumin to produce nanoparticles with increased foam stability.
    Dhayal SK; Delahaije RJ; de Vries RJ; Gruppen H; Wierenga PA
    Soft Matter; 2015 Oct; 11(40):7888-98. PubMed ID: 26327613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocatalytic System Made of 3D Chitin, Silica Nanopowder and Horseradish Peroxidase for the Removal of 17α-Ethinylestradiol: Determination of Process Efficiency and Degradation Mechanism.
    Machałowski T; Jankowska K; Bachosz K; Smułek W; Ehrlich H; Kaczorek E; Zdarta J; Jesionowski T
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ synthesized gold nanoparticles for direct electrochemistry of horseradish peroxidase.
    Wan Q; Song H; Shu H; Wang Z; Zou J; Yang N
    Colloids Surf B Biointerfaces; 2013 Apr; 104():181-5. PubMed ID: 23314493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monodispersed silica nanoparticles as carrier for co-immobilization of bi-enzyme and its application for glucose biosensing.
    Yang H; Wei W; Liu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():183-8. PubMed ID: 24548811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Characterization of proteo-, chitino- and lipolytic enzymes of parasitic fungus Conidiobolus coronatus].
    Włóka E
    Wiad Parazytol; 2010; 56(1):83-5. PubMed ID: 20450015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: II. Secondary structure.
    Cruz JC; Pfromm PH; Tomich JM; Rezac ME
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):1-10. PubMed ID: 20638251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-specific protein cross-linking by peroxidase-catalyzed activation of a tyrosine-containing peptide tag.
    Minamihata K; Goto M; Kamiya N
    Bioconjug Chem; 2011 Jan; 22(1):74-81. PubMed ID: 21142129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement.
    Sun W; Vallooran JJ; Zabara A; Mezzenga R
    Nanoscale; 2014 Jun; 6(12):6853-9. PubMed ID: 24831024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity.
    Wang X; Zhang Y; Li T; Tian W; Zhang Q; Cheng Y
    Langmuir; 2013 Apr; 29(17):5262-70. PubMed ID: 23544351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adhesive Drug Delivery Systems Based on Polyelectrolyte Complex Nanoparticles (PEC NP) for Bone Healing.
    Muller M; Vehlow D; Torger B; Urban B; Woltmann B; Hempel U
    Curr Pharm Des; 2018; 24(13):1341-1348. PubMed ID: 29237375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles.
    Wu H; Liu Y; Li M; Chong Y; Zeng M; Lo YM; Yin JJ
    Nanoscale; 2015 Mar; 7(10):4505-13. PubMed ID: 25684572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano reengineering of horseradish peroxidase with dendritic macromolecules for stability enhancement.
    Khosravi A; Vossoughi M; Shahrokhian S; Alemzadeh I
    Enzyme Microb Technol; 2012 Jan; 50(1):10-6. PubMed ID: 22133434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors.
    Shi J; Wei Z; Song J
    J Biol Chem; 2004 Jun; 279(23):24765-73. PubMed ID: 15037623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis.
    Allen BL; Kichambare PD; Gou P; Vlasova II; Kapralov AA; Konduru N; Kagan VE; Star A
    Nano Lett; 2008 Nov; 8(11):3899-903. PubMed ID: 18954125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.