These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36769653)
1. Detecting Macular Disease Based on Optical Coherence Tomography Using a Deep Convolutional Network. Han J; Choi S; Park JI; Hwang JS; Han JM; Ko J; Yoon J; Hwang DD J Clin Med; 2023 Jan; 12(3):. PubMed ID: 36769653 [TBL] [Abstract][Full Text] [Related]
2. Classifying neovascular age-related macular degeneration with a deep convolutional neural network based on optical coherence tomography images. Han J; Choi S; Park JI; Hwang JS; Han JM; Lee HJ; Ko J; Yoon J; Hwang DD Sci Rep; 2022 Feb; 12(1):2232. PubMed ID: 35140257 [TBL] [Abstract][Full Text] [Related]
3. Classifying central serous chorioretinopathy subtypes with a deep neural network using optical coherence tomography images: a cross-sectional study. Yoon J; Han J; Ko J; Choi S; Park JI; Hwang JS; Han JM; Jang K; Sohn J; Park KH; Hwang DD Sci Rep; 2022 Jan; 12(1):422. PubMed ID: 35013502 [TBL] [Abstract][Full Text] [Related]
4. Distinguishing retinal angiomatous proliferation from polypoidal choroidal vasculopathy with a deep neural network based on optical coherence tomography. Hwang DD; Choi S; Ko J; Yoon J; Park JI; Hwang JS; Han JM; Lee HJ; Sohn J; Park KH; Han J Sci Rep; 2021 Apr; 11(1):9275. PubMed ID: 33927240 [TBL] [Abstract][Full Text] [Related]
5. Optical coherence tomography-based deep-learning model for detecting central serous chorioretinopathy. Yoon J; Han J; Park JI; Hwang JS; Han JM; Sohn J; Park KH; Hwang DD Sci Rep; 2020 Nov; 10(1):18852. PubMed ID: 33139813 [TBL] [Abstract][Full Text] [Related]
6. Assessing central serous chorioretinopathy with deep learning and multiple optical coherence tomography images. Ko J; Han J; Yoon J; Park JI; Hwang JS; Han JM; Park KH; Hwang DD Sci Rep; 2022 Feb; 12(1):1831. PubMed ID: 35115577 [TBL] [Abstract][Full Text] [Related]
7. Optical Coherence Tomography Image Classification Using Hybrid Deep Learning and Ant Colony Optimization. Khan A; Pin K; Aziz A; Han JW; Nam Y Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571490 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification. Mohan R; Ganapathy K; Arunmozhi R J Popul Ther Clin Pharmacol; 2022; 29(3):e112-e122. PubMed ID: 36196946 [TBL] [Abstract][Full Text] [Related]
9. Automatic quantification of retinal photoreceptor integrity to predict persistent disease activity in neovascular age-related macular degeneration using deep learning. Song X; Xu Q; Li H; Fan Q; Zheng Y; Zhang Q; Chu C; Zhang Z; Yuan C; Ning M; Bian C; Ma K; Qu Y Front Neurosci; 2022; 16():952735. PubMed ID: 36061600 [TBL] [Abstract][Full Text] [Related]
10. OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images. A P S; Kar S; S G; Gopi VP; Palanisamy P Comput Methods Programs Biomed; 2021 Mar; 200():105877. PubMed ID: 33339630 [TBL] [Abstract][Full Text] [Related]
11. Using optical coherence tomography angiography in assessment of the anti-vascular endothelial growth factor effect for pathological vascular tissue in age-related macular degeneration and polypoidal choroidal vasculopathy. Shen YS; Cheng CK Eur J Ophthalmol; 2021 May; 31(3):1267-1280. PubMed ID: 32228025 [TBL] [Abstract][Full Text] [Related]
12. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
13. Classification of age-related macular degeneration using convolutional-neural-network-based transfer learning. Chen YM; Huang WT; Ho WH; Tsai JT BMC Bioinformatics; 2021 Nov; 22(Suppl 5):99. PubMed ID: 34749641 [TBL] [Abstract][Full Text] [Related]
14. Non-transfer Deep Learning of Optical Coherence Tomography for Post-hoc Explanation of Macular Disease Classification. Arefin R; Samad MD; Akyelken FA; Davanian A Proc (IEEE Int Conf Healthc Inform); 2021 Aug; 2021():48-52. PubMed ID: 36168324 [TBL] [Abstract][Full Text] [Related]
15. Morphologic features of large choroidal vessel layer: age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous chorioretinopathy. Baek J; Lee JH; Jung BJ; Kook L; Lee WK Graefes Arch Clin Exp Ophthalmol; 2018 Dec; 256(12):2309-2317. PubMed ID: 30259090 [TBL] [Abstract][Full Text] [Related]
16. Optical Coherence Tomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes. Motozawa N; An G; Takagi S; Kitahata S; Mandai M; Hirami Y; Yokota H; Akiba M; Tsujikawa A; Takahashi M; Kurimoto Y Ophthalmol Ther; 2019 Dec; 8(4):527-539. PubMed ID: 31407214 [TBL] [Abstract][Full Text] [Related]
17. Diagnosis of central serous chorioretinopathy by deep learning analysis of en face images of choroidal vasculature: A pilot study. Aoyama Y; Maruko I; Kawano T; Yokoyama T; Ogawa Y; Maruko R; Iida T PLoS One; 2021; 16(6):e0244469. PubMed ID: 34143775 [TBL] [Abstract][Full Text] [Related]
18. Artificial intelligence method based on multi-feature fusion for automatic macular edema (ME) classification on spectral-domain optical coherence tomography (SD-OCT) images. Gan F; Wu FP; Zhong YL Front Neurosci; 2023; 17():1097291. PubMed ID: 36793539 [TBL] [Abstract][Full Text] [Related]
19. [Pathophysiology of macular diseases--morphology and function]. Iida T Nippon Ganka Gakkai Zasshi; 2011 Mar; 115(3):238-74; discussion 275. PubMed ID: 21476310 [TBL] [Abstract][Full Text] [Related]