These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36769996)

  • 1. A Review-Additive Manufacturing of Intermetallic Alloys Based on Orthorhombic Titanium Aluminide Ti
    Illarionov AG; Stepanov SI; Naschetnikova IA; Popov AA; Soundappan P; Thulasi Raman KH; Suwas S
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating Inhomogeneity and Tailoring the Microstructure of Selective Laser Melted Titanium Orthorhombic Alloy by Heat Treatment, Hot Isostatic Pressing, and Multiple Laser Exposures.
    Polozov I; Starikov K; Popovich A; Sufiiarov V
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface Characterization of Bimetallic Ti-6Al-4V/Ti2AlNb Structures Prepared by Selective Laser Melting.
    Polozov I; Gracheva A; Popovich A
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36500024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Preheating and Post-Heating on the Microstructures and Mechanical Properties of TC17-Ti
    Li L; Fu P; Lin B; Wang X
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Relationship between Microstructure and Fracture Behavior of TiAl/Ti
    Liao M; Tian H; Zhao L; Zhang B; He J
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting.
    Mohammad A; Alahmari AM; Mohammed MK; Renganayagalu RK; Moiduddin K
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive manufacturing of ultrafine-grained high-strength titanium alloys.
    Zhang D; Qiu D; Gibson MA; Zheng Y; Fraser HL; StJohn DH; Easton MA
    Nature; 2019 Dec; 576(7785):91-95. PubMed ID: 31802014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods.
    Knaislová A; Novák P; Kopeček J; Průša F
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31546647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive Manufacturing Technologies of High Entropy Alloys (HEA): Review and Prospects.
    Ron T; Shirizly A; Aghion E
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of TiAl-Si Alloys-A Review.
    Knaislová A; Novák P; Cabibbo M; Jaworska L; Vojtěch D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-Mechanical Properties and Creep Behavior of Ti6Al4V Fabricated by Powder Bed Fusion Electron Beam Additive Manufacturing.
    Peng H; Fang W; Dong C; Yi Y; Wei X; Luo B; Huang S
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34206046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spark Plasma Diffusion Bonding of TiAl/Ti
    Zhang B; Chen C; He J; Hou J; Chai L; Lv Y
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Laser Powder Bed Fusion Process Tailored for the Additive Manufacturing of High-Quality Components Made of the Commercial Magnesium Alloy WE43.
    Julmi S; Abel A; Gerdes N; Hoff C; Hermsdorf J; Overmeyer L; Klose C; Maier HJ
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the Post-Process Heat Treatment Strategy for a Near-α Titanium Base Alloy Produced by Laser Powder Bed Fusion.
    Fleißner-Rieger C; Pfeifer T; Turk C; Clemens H
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research Status and Prospect of Additive Manufactured Nickel-Titanium Shape Memory Alloys.
    Wen S; Gan J; Li F; Zhou Y; Yan C; Shi Y
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine.
    Dzogbewu TC; du Preez WB
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive Manufacturing of Ti-48Al-2Cr-2Nb Alloy Using Gas Atomized and Mechanically Alloyed Plasma Spheroidized Powders.
    Polozov I; Kantyukov A; Goncharov I; Razumov N; Silin A; Popovich V; Zhu JN; Popovich A
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32906691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic effects of alloying elements on β solidifying titanium aluminides: A review.
    Raji SA; Popoola API; Pityana SL; Popoola OM
    Heliyon; 2020 Jul; 6(7):e04463. PubMed ID: 32728641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Fabrication of New High Entropy Alloys for Evaluating Titanium Replacements in Additive Manufacturing.
    Sarswat P; Smith T; Sarkar S; Murali A; Free M
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32640563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition.
    Zhang G; Liu W; Zhang P; Xiong H; Gao J; Yu H; Yuan H
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.