These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36770062)

  • 1. Particle Image Velocimetry of 3D-Printed Anatomical Blood Vascular Models Affected by Atherosclerosis.
    Antonowicz A; Wojtas K; Makowski Ł; Orciuch W; Kozłowski M
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms.
    Ho WH; Tshimanga IJ; Ngoepe MN; Jermy MC; Geoghegan PH
    Cardiovasc Eng Technol; 2020 Feb; 11(1):14-23. PubMed ID: 31820351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Low-Cost Patient-Specific Vascular Models for Particle Image Velocimetry.
    Falk KL; Medero R; Roldán-Alzate A
    Cardiovasc Eng Technol; 2019 Sep; 10(3):500-507. PubMed ID: 31098919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Shape Reconstruction of 3D Printed Transparent Microscopic Objects from Multiple Photographic Images Using Ultraviolet Illumination.
    Koyama K; Takakura M; Furukawa T; Maruo S
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed patient-specific applications in orthopedics.
    Wong KC
    Orthop Res Rev; 2016; 8():57-66. PubMed ID: 30774470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques.
    Shui W; Zhou M; Chen S; Pan Z; Deng Q; Yao Y; Pan H; He T; Wang X
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):13-23. PubMed ID: 27480284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QuickPIV: Efficient 3D particle image velocimetry software applied to quantifying cellular migration during embryogenesis.
    Pereyra M; Drusko A; Krämer F; Strobl F; Stelzer EHK; Matthäus F
    BMC Bioinformatics; 2021 Dec; 22(1):579. PubMed ID: 34863116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a Patient-Specific, 3-Dimensionally Printed Endoscopic Sinus and Skull Base Surgical Model.
    Hsieh TY; Cervenka B; Dedhia R; Strong EB; Steele T
    JAMA Otolaryngol Head Neck Surg; 2018 Jul; 144(7):574-579. PubMed ID: 29799965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of computed tomography pulmonary angiography protocols using 3D printed model with simulation of pulmonary embolism.
    Aldosari S; Jansen S; Sun Z
    Quant Imaging Med Surg; 2019 Jan; 9(1):53-62. PubMed ID: 30788246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone-based particle image velocimetry for cardiovascular flows applications: A focus on coronary arteries.
    Caridi GCA; Torta E; Mazzi V; Chiastra C; Audenino AL; Morbiducci U; Gallo D
    Front Bioeng Biotechnol; 2022; 10():1011806. PubMed ID: 36568311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Sugar Printing of Networks Mimicking the Vasculature.
    Pollet AMAO; Homburg EFGA; Cardinaels R; den Toonder JMJ
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31905877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Models of Cleft Palate Pathology for Surgical Education.
    Lioufas PA; Quayle MR; Leong JC; McMenamin PG
    Plast Reconstr Surg Glob Open; 2016 Sep; 4(9):e1029. PubMed ID: 27757345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data.
    Costa PF; Albers HJ; Linssen JEA; Middelkamp HHT; van der Hout L; Passier R; van den Berg A; Malda J; van der Meer AD
    Lab Chip; 2017 Aug; 17(16):2785-2792. PubMed ID: 28717801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomic modeling using 3D printing: quality assurance and optimization.
    Leng S; McGee K; Morris J; Alexander A; Kuhlmann J; Vrieze T; McCollough CH; Matsumoto J
    3D Print Med; 2017; 3(1):6. PubMed ID: 29782614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Resin-Based 3D Printing to Build Geometrically Accurate Proxies of Porous Sedimentary Rocks.
    Ishutov S; Hasiuk FJ; Jobe D; Agar S
    Ground Water; 2018 May; 56(3):482-490. PubMed ID: 28960285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle movement and fluid behavior visualization using an optically transparent 3D-printed micro-hydrocyclone.
    Syed MS; Mirakhorli F; Marquis C; Taylor RA; Warkiani ME
    Biomicrofluidics; 2020 Nov; 14(6):064106. PubMed ID: 33269035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D µ-Particle Image Velocimetry and Computational Fluid Dynamics Study Within a 3D Porous Scaffold.
    Campos Marin A; Grossi T; Bianchi E; Dubini G; Lacroix D
    Ann Biomed Eng; 2017 May; 45(5):1341-1351. PubMed ID: 27957607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.