These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36770109)
1. Investigating Ultrasonic Pulse Velocity Method for Evaluating High-Temperature Properties of Non-Sintered Hwangto-Mixed Concrete as a Cement Replacement Material. Kim W; Choi H; Lee T Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770109 [TBL] [Abstract][Full Text] [Related]
2. Strength Prediction of Non-Sintered Hwangto-Substituted Concrete Using the Ultrasonic Velocity Method. Im H; Kim W; Choi H; Lee T Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204026 [TBL] [Abstract][Full Text] [Related]
3. Evaluation on Early Strength Development of Concrete Mixed with Non-Sintered Hwangto Using Ultrasonic Pulse Velocity. Nam Y; Jeong K; Kim W; Choi H; Lee T Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959447 [TBL] [Abstract][Full Text] [Related]
4. Residual Compressive Strength Prediction Model for Concrete Subject to High Temperatures Using Ultrasonic Pulse Velocity. Kim W; Choi H; Lee T Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676252 [TBL] [Abstract][Full Text] [Related]
5. A Study to Improve the Reliability of High-Strength Concrete Strength Evaluation Using an Ultrasonic Velocity Method. Kim W; Lee T Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895781 [TBL] [Abstract][Full Text] [Related]
6. Statistical Reliability Analysis of Ultrasonic Velocity Method for Predicting Residual Strength of High-Strength Concrete under High-Temperature Conditions. Kim W; Jeong K; Lee T Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541560 [TBL] [Abstract][Full Text] [Related]
7. Experimental Study of Thermally Damaged Concrete under a Hygrothermal Environment by Using a Combined Infrared Thermal Imaging and Ultrasonic Pulse Velocity Method. Wang Y; Cui J; Deng J; Zhou H Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770046 [TBL] [Abstract][Full Text] [Related]
8. Mechanical Performance of High-Strength Sustainable Concrete under Fire Incorporating Locally Available Volcanic Ash in Central Harrat Rahat, Saudi Arabia. Amin MN; Khan K Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374583 [TBL] [Abstract][Full Text] [Related]
9. Estimating Compressive Strength of Concrete Containing Untreated Coal Waste Aggregates Using Ultrasonic Pulse Velocity. Karimaei M; Dabbaghi F; Dehestani M; Rashidi M Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572511 [TBL] [Abstract][Full Text] [Related]
10. Concrete Compressive Strength by Means of Ultrasonic Pulse Velocity and Moduli of Elasticity. Bolborea B; Baera C; Dan S; Gruin A; Burduhos-Nergis DD; Vasile V Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832417 [TBL] [Abstract][Full Text] [Related]
11. Relationships among compressive strength and UPV of concrete reinforced with different types of fibers. Hedjazi S; Castillo D Heliyon; 2020 Mar; 6(3):e03646. PubMed ID: 32258488 [TBL] [Abstract][Full Text] [Related]
12. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Trtnik G; Kavcic F; Turk G Ultrasonics; 2009 Jan; 49(1):53-60. PubMed ID: 18589471 [TBL] [Abstract][Full Text] [Related]
13. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test. Yılmaz T; Ercikdi B; Karaman K; Külekçi G Ultrasonics; 2014 Jul; 54(5):1386-94. PubMed ID: 24602334 [TBL] [Abstract][Full Text] [Related]
15. Experimental Study on the Compressive Strength and Fatigue Life of Cement Concrete under Temperature Differential Cycling. Tao C; Dong L; Fan W; Yu T Materials (Basel); 2023 Dec; 16(23):. PubMed ID: 38068231 [TBL] [Abstract][Full Text] [Related]
16. Effects of maximum aggregate size on UPV of brick aggregate concrete. Mohammed TU; Mahmood AH Ultrasonics; 2016 Jul; 69():129-36. PubMed ID: 27085110 [TBL] [Abstract][Full Text] [Related]
17. Correlation Analysis of Ultrasonic Pulse Velocity and Mechanical Properties of Normal Aggregate and Lightweight Aggregate Concretes in 30-60 MPa Range. Kim W; Jeong K; Choi H; Lee T Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454644 [TBL] [Abstract][Full Text] [Related]
18. Experimental study to compare the strength of concrete with different amounts of polypropylene fibers at high temperatures. Wang Y; Nejati F; Edalatpanah SA; Goudarzi Karim R Sci Rep; 2024 Apr; 14(1):8566. PubMed ID: 38609474 [TBL] [Abstract][Full Text] [Related]
19. Fire Performance of Heavyweight Self-Compacting Concrete and Heavyweight High Strength Concrete. Aslani F; Hamidi F; Ma Q Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862065 [TBL] [Abstract][Full Text] [Related]
20. Destructive and Non-Destructive Evaluation of Fibre-Reinforced Concrete: A Comprehensive Study of Mechanical Properties. Najm HM; Nanayakkara O; Sabri MMS Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]