These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36770119)

  • 1. Investigation of Amorphous Carbon in Nanostructured Carbon Materials (A Comparative Study by TEM, XPS, Raman Spectroscopy and XRD).
    Moseenkov SI; Kuznetsov VL; Zolotarev NA; Kolesov BA; Prosvirin IP; Ishchenko AV; Zavorin AV
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [XPS and Raman spectral analysis of nitrogenated tetrahedral amorphous carbon (ta-C : N) films with different nitrogen content].
    Chen WS; Zhu JQ; Han JC; Tian G; Tan ML
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):268-72. PubMed ID: 19385255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Carbon in Carbon: Exploiting Differential Charging to Obtain Information on the Chemical Identity and Spatial Location of Carbon Nanotube Aggregates in Composites by Imaging X-ray Photoelectron Spectroscopy.
    Gorham JM; Osborn WA; Woodcock JW; Scott KC; Heddleston JM; Walker AR; Gilman JW
    Carbon N Y; 2016 Jan; 96():1208-1216. PubMed ID: 27765956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate effect on the properties of functionalized multiwalled carbon nanotubes grown by e-beam evaporation for high performance H
    Vijayalakshmi K; Sivaraj D
    Analyst; 2016 Oct; 141(21):6149-6159. PubMed ID: 27540602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond.
    Ferrari AC; Robertson J
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2477-512. PubMed ID: 15482988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation, deformation, and destruction of carbon nanotubes in aqueous ceric sulfate.
    Luong JH; Hrapovic S; Liu Y; Yang DQ; Sacher E; Wang D; Kingston CT; Enright GD
    J Phys Chem B; 2005 Feb; 109(4):1400-7. PubMed ID: 16851109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of carbon nanotube through sonochemical process under ambient conditions.
    Raja M; Ryu SH
    J Nanosci Nanotechnol; 2009 Oct; 9(10):5940-5. PubMed ID: 19908478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites.
    Furlan A; Lu J; Hultman L; Jansson U; Magnuson M
    J Phys Condens Matter; 2014 Oct; 26(41):415501. PubMed ID: 25237716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of benzylidenemalononitrile by Knoevenagel condensation through monodisperse carbon nanotube-based NiCu nanohybrids.
    Zengin N; Burhan H; Şavk A; Göksu H; Şen F
    Sci Rep; 2020 Jul; 10(1):12758. PubMed ID: 32728177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Optical Properties of Amorphous-Like Ga
    Li S; Yang C; Zhang J; Dong L; Cai C; Liang H; Liu W
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32899985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Concentration of C(
    Shulga YM; Kabachkov EN; Korepanov VI; Khodos II; Kovalev DY; Melezhik AV; Tkachev AG; Gutsev GL
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ quantum dot growth on multiwalled carbon nanotubes.
    Banerjee S; Wong SS
    J Am Chem Soc; 2003 Aug; 125(34):10342-50. PubMed ID: 12926959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman, EELS and XPS studies of maghemite decorated multi-walled carbon nanotubes.
    Zhang W; Stolojan V; Silva SR; Wu CW
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():715-8. PubMed ID: 24374884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation.
    Eswara S; Audinot JN; El Adib B; Guennou M; Wirtz T; Philipp P
    Beilstein J Nanotechnol; 2018; 9():1951-1963. PubMed ID: 30116687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity.
    Mohan R; Shanmugharaj AM; Sung Hun R
    J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):119-26. PubMed ID: 21061363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergence in the evolution of nanodiamond Raman spectra with particle size: a theoretical investigation.
    Li W; Irle S; Witek HA
    ACS Nano; 2010 Aug; 4(8):4475-86. PubMed ID: 20731431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of argon ion irradiated pristine and fluorinated single-wall carbon nanotubes.
    Fedoseeva YV; Bulusheva LG; Okotrub AV; Vyalikh DV; Fonseca A
    J Chem Phys; 2010 Dec; 133(22):224706. PubMed ID: 21171695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental and toxicological assessment of nanodiamond-like materials derived from carbonaceous aerosols.
    Islam N; Dihingia A; Manna P; Das T; Kalita J; Dekaboruah HP; Saikia BK
    Sci Total Environ; 2019 Aug; 679():209-220. PubMed ID: 31082594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Made-to-order nanocarbons through deterministic plasma nanotechnology.
    Ren Y; Xu S; Rider AE; Ostrikov KK
    Nanoscale; 2011 Feb; 3(2):731-40. PubMed ID: 21079877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.