These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 36770135)
1. Band Structure, Phonon Spectrum and Thermoelectric Properties of Ag Pshenay-Severin D; Guin SN; Konstantinov P; Novikov S; Rathore E; Biswas K; Burkov A Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770135 [TBL] [Abstract][Full Text] [Related]
2. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion. Zhou J; Liao B; Qiu B; Huberman S; Esfarjani K; Dresselhaus MS; Chen G Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14777-82. PubMed ID: 26627231 [TBL] [Abstract][Full Text] [Related]
3. Ultra-low thermal conductivity and high thermoelectric performance of monolayer BiP Wu YY; Wei Q; Zou J; Yang H Phys Chem Chem Phys; 2021 Sep; 23(35):19834-19840. PubMed ID: 34525134 [TBL] [Abstract][Full Text] [Related]
4. Phonon transport and thermoelectric properties of semiconducting Bi Rashid Z; Nissimagoudar AS; Li W Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478 [TBL] [Abstract][Full Text] [Related]
6. Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium. Zhang Q; Cao F; Lukas K; Liu W; Esfarjani K; Opeil C; Broido D; Parker D; Singh DJ; Chen G; Ren Z J Am Chem Soc; 2012 Oct; 134(42):17731-8. PubMed ID: 23025440 [TBL] [Abstract][Full Text] [Related]
7. Extremely Low Lattice Thermal Conductivity Leading to Superior Thermoelectric Performance in Cu Zhang T; Yu T; Ning S; Zhang Z; Qi N; Jiang M; Chen Z ACS Appl Mater Interfaces; 2023 Jul; 15(27):32453-32462. PubMed ID: 37368823 [TBL] [Abstract][Full Text] [Related]
8. Electron, phonon and thermoelectric properties of Cu Andriyevsky B; Barchiy IE; Studenyak IP; Kashuba AI; Piasecki M Sci Rep; 2021 Sep; 11(1):19065. PubMed ID: 34561499 [TBL] [Abstract][Full Text] [Related]
9. Thermoelectric properties of Ag-doped CuI: a temperature dependent optical phonon study. Kumar S; Battabyal M; K S; Satapathy DK Phys Chem Chem Phys; 2022 Oct; 24(39):24228-24237. PubMed ID: 36169015 [TBL] [Abstract][Full Text] [Related]
10. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696 [TBL] [Abstract][Full Text] [Related]
11. Realization of an ultra-low lattice thermal conductivity in Bi Vijay V; Harish S; Archana J; Navaneethan M J Colloid Interface Sci; 2023 May; 637():340-353. PubMed ID: 36709591 [TBL] [Abstract][Full Text] [Related]
12. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides. Rhyee JS; Kim JH Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002 [TBL] [Abstract][Full Text] [Related]
13. Strain engineering of polar optical phonon scattering mechanism - an effective way to optimize the power-factor and lattice thermal conductivity of ScN. Panneerselvam IR; Kim MH; Baldo C; Wang Y; Sahasranaman M Phys Chem Chem Phys; 2021 Oct; 23(40):23288-23302. PubMed ID: 34632991 [TBL] [Abstract][Full Text] [Related]
14. Prospects for Engineering Thermoelectric Properties in La Kepaptsoglou D; Baran JD; Azough F; Ekren D; Srivastava D; Molinari M; Parker SC; Ramasse QM; Freer R Inorg Chem; 2018 Jan; 57(1):45-55. PubMed ID: 29257680 [TBL] [Abstract][Full Text] [Related]
15. Ultralow Lattice Thermal Conductivity at Room Temperature in Cu Koley B; Lakshan A; Raghuvanshi PR; Singh C; Bhattacharya A; Jana PP Angew Chem Int Ed Engl; 2021 Apr; 60(16):9106-9113. PubMed ID: 33146447 [TBL] [Abstract][Full Text] [Related]
16. Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. Tan G; Shi F; Hao S; Chi H; Bailey TP; Zhao LD; Uher C; Wolverton C; Dravid VP; Kanatzidis MG J Am Chem Soc; 2015 Sep; 137(35):11507-16. PubMed ID: 26308902 [TBL] [Abstract][Full Text] [Related]
17. Dual Vacancies: An Effective Strategy Realizing Synergistic Optimization of Thermoelectric Property in BiCuSeO. Li Z; Xiao C; Fan S; Deng Y; Zhang W; Ye B; Xie Y J Am Chem Soc; 2015 May; 137(20):6587-93. PubMed ID: 25927811 [TBL] [Abstract][Full Text] [Related]
18. Influence of Generated Defects by Ar Implantation on the Thermoelectric Properties of ScN. Burcea R; Barbot JF; Renault PO; Eyidi D; Girardeau T; Marteau M; Giovannelli F; Zenji A; Rampnoux JM; Dilhaire S; Eklund P; le Febvrier A ACS Appl Energy Mater; 2022 Sep; 5(9):11025-11033. PubMed ID: 36185810 [TBL] [Abstract][Full Text] [Related]
19. Overdamped Phonon Diffusion and Nontrivial Electronic Structure Leading to a High Thermoelectric Figure of Merit in KCu Li F; Liu X; Ma N; Yang YC; Yin JP; Chen L; Wu LM J Am Chem Soc; 2023 Jul; 145(27):14981-14993. PubMed ID: 37382475 [TBL] [Abstract][Full Text] [Related]
20. PAW-mediated ab initio simulations on linear response phonon dynamics of anisotropic black phosphorous monolayer for thermoelectric applications. Behera SK; Deb P Phys Chem Chem Phys; 2018 Nov; 20(41):26688-26695. PubMed ID: 30320849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]