These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36770159)

  • 1. Phosphorous- and Boron-Doped Graphene-Based Nanomaterials for Energy-Related Applications.
    Ubhi MK; Kaur M; Grewal JK; Sharma VK
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Vapor Deposition of Phosphorous- and Boron-Doped Graphene Using Phenyl-Containing Molecules.
    Mekan Ovezmyradov ; Magedov IV; Frolova LV; Chandler G; Garcia J; Bethke D; Shaner EA; Kalugin NG
    J Nanosci Nanotechnol; 2015 Jul; 15(7):4883-6. PubMed ID: 26373051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Electrochemical Reactivity of Boron- and Nitrogen-Substituted Graphene.
    Wu J; Rodrigues MT; Vajtai R; Ajayan PM
    Adv Mater; 2016 Aug; 28(29):6239-46. PubMed ID: 27028898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heteroatom-Doped Metal-Free Carbon Nanomaterials as Potential Electrocatalysts.
    Chattopadhyay J; Pathak TS; Pak D
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment.
    Kaur M; Kaur M; Sharma VK
    Adv Colloid Interface Sci; 2018 Sep; 259():44-64. PubMed ID: 30032930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
    Lazar P; Zboƙil R; Pumera M; Otyepka M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14231-5. PubMed ID: 24912566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and Electrical Characterizations of Low-Damage Phosphorous-Doped Graphene via Ion Implantation.
    He SM; Huang CC; Liou JW; Woon WY; Su CY
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47289-47298. PubMed ID: 31746197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.
    Hou J; Shao Y; Ellis MW; Moore RB; Yi B
    Phys Chem Chem Phys; 2011 Sep; 13(34):15384-402. PubMed ID: 21799983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion.
    Shi Q; Cha Y; Song Y; Lee JI; Zhu C; Li X; Song MK; Du D; Lin Y
    Nanoscale; 2016 Aug; 8(34):15414-47. PubMed ID: 27531643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties.
    Yeom DY; Jeon W; Tu ND; Yeo SY; Lee SS; Sung BJ; Chang H; Lim JA; Kim H
    Sci Rep; 2015 May; 5():9817. PubMed ID: 25940534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Chemical Potential Difference across Alternately Doped Graphene p-n Junctions for High-Efficiency Photodetection.
    Lin L; Xu X; Yin J; Sun J; Tan Z; Koh AL; Wang H; Peng H; Chen Y; Liu Z
    Nano Lett; 2016 Jul; 16(7):4094-101. PubMed ID: 27351273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doped graphene supercapacitors.
    Kumar NA; Baek JB
    Nanotechnology; 2015 Dec; 26(49):492001. PubMed ID: 26574192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Free Synthesis of Boron-Doped Graphene Glass by Hot-Filament Chemical Vapor Deposition for Wave Energy Harvesting.
    Zhai Z; Shen H; Chen J; Li X; Li Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2805-2815. PubMed ID: 31867953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of Graphene Growth From a Solid Carbon Source by Pulsed Laser Deposition (PLD).
    Bleu Y; Bourquard F; Tite T; Loir AS; Maddi C; Donnet C; Garrelie F
    Front Chem; 2018; 6():572. PubMed ID: 30560117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications.
    Jeon IY; Noh HJ; Baek JB
    Chem Asian J; 2020 Aug; 15(15):2282-2293. PubMed ID: 31729172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping of graphene induced by boron/silicon substrate.
    Dianat A; Liao Z; Gall M; Zhang T; Gutierrez R; Zschech E; Cuniberti G
    Nanotechnology; 2017 May; 28(21):215701. PubMed ID: 28402285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in Nonmetal-Doped Graphene Electrocatalysts for the Oxygen Reduction Reaction.
    Shao Y; Jiang Z; Zhang Q; Guan J
    ChemSusChem; 2019 May; 12(10):2133-2146. PubMed ID: 30806034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives.
    Jaiswal V; Kalyani ; Umrao S; Rastogi RB; Kumar R; Srivastava A
    ACS Appl Mater Interfaces; 2016 May; 8(18):11698-710. PubMed ID: 27097308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron doping of graphene-pushing the limit.
    Chaban VV; Prezhdo OV
    Nanoscale; 2016 Aug; 8(34):15521-8. PubMed ID: 27533648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.