These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36770159)

  • 41. Effect of Doping Temperatures and Nitrogen Precursors on the Physicochemical, Optical, and Electrical Conductivity Properties of Nitrogen-Doped Reduced Graphene Oxide.
    Ngidi NPD; Ollengo MA; Nyamori VO
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Green Synthesis of Porous Three-Dimensional Nitrogen-Doped Graphene Foam for Electrochemical Applications.
    Yu H; Ye D; Butburee T; Wang L; Dargusch M
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2505-10. PubMed ID: 26744920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graphene hybridization for energy storage applications.
    Li X; Zhi L
    Chem Soc Rev; 2018 May; 47(9):3189-3216. PubMed ID: 29512678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Porous graphene materials for advanced electrochemical energy storage and conversion devices.
    Han S; Wu D; Li S; Zhang F; Feng X
    Adv Mater; 2014 Feb; 26(6):849-64. PubMed ID: 24347321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Raman spectroscopy of boron-doped single-layer graphene.
    Kim YA; Fujisawa K; Muramatsu H; Hayashi T; Endo M; Fujimori T; Kaneko K; Terrones M; Behrends J; Eckmann A; Casiraghi C; Novoselov KS; Saito R; Dresselhaus MS
    ACS Nano; 2012 Jul; 6(7):6293-300. PubMed ID: 22695033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure prediction of boron-doped graphene by machine learning.
    M Dieb T; Hou Z; Tsuda K
    J Chem Phys; 2018 Jun; 148(24):241716. PubMed ID: 29960333
    [TBL] [Abstract][Full Text] [Related]  

  • 48. N-Doped Modified Graphene/Fe
    Chen Y; Guo Z; Jian B; Zheng C; Zhang H
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31842343
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electronic interaction between nitrogen atoms in doped graphene.
    Tison Y; Lagoute J; Repain V; Chacon C; Girard Y; Rousset S; Joucken F; Sharma D; Henrard L; Amara H; Ghedjatti A; Ducastelle F
    ACS Nano; 2015 Jan; 9(1):670-8. PubMed ID: 25558891
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Converting graphene oxide monolayers into boron carbonitride nanosheets by substitutional doping.
    Lin TW; Su CY; Zhang XQ; Zhang W; Lee YH; Chu CW; Lin HY; Chang MT; Chen FR; Li LJ
    Small; 2012 May; 8(9):1384-91. PubMed ID: 22378619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Permeability of boron- and nitrogen-doped graphene nanoflakes for protium/deuterium ions.
    Gul I; Yar M; Ahmed A; Hashmi MA; Ayub K
    RSC Adv; 2022 Jan; 12(7):3883-3891. PubMed ID: 35425466
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials.
    Li Q; Horn M; Wang Y; MacLeod J; Motta N; Liu J
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications.
    Lee WJ; Maiti UN; Lee JM; Lim J; Han TH; Kim SO
    Chem Commun (Camb); 2014 Jul; 50(52):6818-30. PubMed ID: 24710592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of Nitrogen-doped Holey Multilayer Graphene Using High-Energy Ball Milling of Graphite in Presence of Melamine.
    Hendaoui A; Alshammari A
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614557
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of Boron-Doped Carbon Nanomaterial.
    Chesnokov VV; Prosvirin IP; Gerasimov EY; Chichkan AS
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Progress and Prospects on the Fabrication of Graphene-Based Nanostructures for Energy Storage, Energy Conversion and Biomedical Applications.
    Immanuel S; Ahmad Dar M; Sivasubramanian R; Rezaul Karim M; Kim DW; Gul R
    Chem Asian J; 2021 Jun; 16(11):1365-1381. PubMed ID: 33899344
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electronic and Chemical Properties of Donor, Acceptor Centers in Graphene.
    Telychko M; Mutombo P; Merino P; Hapala P; Ondráček M; Bocquet FC; Sforzini J; Stetsovych O; Vondráček M; Jelínek P; Švec M
    ACS Nano; 2015 Sep; 9(9):9180-7. PubMed ID: 26256407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and applications of carbon nanomaterials for energy generation and storage.
    Notarianni M; Liu J; Vernon K; Motta N
    Beilstein J Nanotechnol; 2016; 7():149-96. PubMed ID: 26925363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors.
    Luan Y; Hu R; Fang Y; Zhu K; Cheng K; Yan J; Ye K; Wang G; Cao D
    Nanomicro Lett; 2019 Apr; 11(1):30. PubMed ID: 34137976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Graphene and graphene-based materials for energy storage applications.
    Zhu J; Yang D; Yin Z; Yan Q; Zhang H
    Small; 2014 Sep; 10(17):3480-98. PubMed ID: 24431122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.