BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36770272)

  • 21. Valorization of wipe wastes for the synthesis of microporous carbons and their application in CO
    Cecilia JA; Vilarrasa-García E; Azevedo DCS; Vílchez-Cózar A; Infantes-Molina A; Ballesteros-Plata D; Barroso-Martín I; Rodríguez-Castellón E
    Heliyon; 2023 Oct; 9(10):e20606. PubMed ID: 37860566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hybrid absorption-adsorption method to efficiently capture carbon.
    Liu H; Liu B; Lin LC; Chen G; Wu Y; Wang J; Gao X; Lv Y; Pan Y; Zhang X; Zhang X; Yang L; Sun C; Smit B; Wang W
    Nat Commun; 2014 Oct; 5():5147. PubMed ID: 25296559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of Bridging Molecular and Process Modeling to Design Optimal Adsorbents for Large-Scale CO
    Vega LF; Bahamon D
    Acc Chem Res; 2024 Jan; 57(2):188-197. PubMed ID: 38156949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry.
    Igalavithana AD; Choi SW; Shang J; Hanif A; Dissanayake PD; Tsang DCW; Kwon JH; Lee KB; Ok YS
    Sci Total Environ; 2020 Oct; 739():139845. PubMed ID: 32758935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of palm sheath derived-porous carbon for selective CO
    Zhang Y; Wei Z; Liu X; Liu F; Yan Z; Zhou S; Wang J; Deng S
    RSC Adv; 2022 Mar; 12(14):8592-8599. PubMed ID: 35424789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture.
    Al-Wabel M; Elfaki J; Usman A; Hussain Q; Ok YS
    Environ Res; 2019 Jul; 174():69-79. PubMed ID: 31054524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.
    Wang J; Chen H; Zhou H; Liu X; Qiao W; Long D; Ling L
    J Environ Sci (China); 2013 Jan; 25(1):124-32. PubMed ID: 23586307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of biochar and compost mixtures, water content, and gas flow rate, on the continuous adsorption of methane in a fixed bed column.
    La H; Hettiaratchi JPA; Achari G
    J Environ Manage; 2019 Mar; 233():175-183. PubMed ID: 30579005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosorptive efficacy of granular activated carbon in pressure swing adsorption based model cooling system: performance assessment, isotherm modeling and cost evaluation.
    Roy Z; Palodkar AV; Halder G
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30351-30365. PubMed ID: 33587274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.
    Sadasivam BY; Reddy KR
    J Environ Manage; 2015 Aug; 158():11-23. PubMed ID: 25935750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and Characterization of Physicochemical Properties of Spruce Cone Biochars Activated by CO
    Jedynak K; Charmas B
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of CO
    Lin H; Lu J; Abed AM; Nag K; Fayed M; Deifalla A; Bin Mahfouz AS; Galal AM
    Chemosphere; 2023 Jul; 329():138583. PubMed ID: 37019408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating the synergistic effects of various amine groups on Zeolite-Y for CO
    Bhati G; Dharanikota NPSK; Uppaluri RVS; Mandal B
    Environ Sci Pollut Res Int; 2024 Jun; ():. PubMed ID: 38858287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on key influencing factors of competitive adsorption of coalbed methane by carbon dioxide displacement.
    Zhang X; Huang G; Shu Z; Tong Y
    Front Chem; 2022; 10():998592. PubMed ID: 36212065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon.
    Saha D; Deng S
    J Colloid Interface Sci; 2010 May; 345(2):402-9. PubMed ID: 20185144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework.
    Wu X; Yuan B; Bao Z; Deng S
    J Colloid Interface Sci; 2014 Sep; 430():78-84. PubMed ID: 24998057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Separation of Biogas Components with Single Wall Carbon Nanotubes: a GCMC Simulation.
    Yeganegi S; Gholampour F
    Acta Chim Slov; 2012 Dec; 59(4):888-96. PubMed ID: 24061372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production.
    Cornelissen G; Pandit NR; Taylor P; Pandit BH; Sparrevik M; Schmidt HP
    PLoS One; 2016; 11(5):e0154617. PubMed ID: 27191397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular simulations of the adsorption and separation of hydrogen sulfide, carbon dioxide, methane, and nitrogen and their binary mixtures (H
    Amouzad Khalili A; Yeganegi S
    J Mol Model; 2021 Apr; 27(5):133. PubMed ID: 33893884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid and Accurate Screening of the COF Space for Natural Gas Purification: COFInformatics.
    Aksu GO; Keskin S
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19806-19818. PubMed ID: 38588323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.