These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36770277)

  • 1. Enhanced Thermoelectric Performance of CoSb
    Wei M; Ma HL; Nie MY; Li YZ; Zheng ZH; Zhang XH; Fan P
    Materials (Basel); 2023 Feb; 16(3):. PubMed ID: 36770277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drastic power factor improvement by Te doping of rare earth-free CoSb
    Bourgès C; Sato N; Baba T; Baba T; Ohkubo I; Tsujii N; Mori T
    RSC Adv; 2020 Jun; 10(36):21129-21135. PubMed ID: 35518726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Thermoelectric Performance of c-Axis-Oriented Epitaxial Ba-Doped BiCuSeO Thin Films.
    Yuan D; Guo S; Hou S; Ma Y; Wang J; Wang S
    Nanoscale Res Lett; 2018 Nov; 13(1):382. PubMed ID: 30488129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric Power-Factor of Ag-Doped TiO
    Usop R; Hasnan MMIM; Mohamad M; Ahmad MK; Said SM; Salleh F
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of nanostructured single-phase CoSb
    Bala M; Gupta S; Srivastava SK; Amrithapandian S; Tripathi TS; Tripathi SK; Dong CL; Chen CL; Avasthi DK; Asokan K
    Phys Chem Chem Phys; 2017 Sep; 19(36):24886-24895. PubMed ID: 28869273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Power Factor and Increased Conductivity of Aluminum Doped Zinc Oxide Thin Films for Thermoelectric Applications.
    Kennedy J; Murmu PP; Leveneur J; Williams VM; Moody RL; Maity T; Chong SV
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1384-1387. PubMed ID: 29448596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure Optimization and Multi-frequency Phonon Scattering Boosting Thermoelectrics in Self-Doped CoSb
    Rao X; Zhong Y; Feng H; Wang Y; Tan X; Zhu J; Ang R
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5301-5308. PubMed ID: 36662503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced High-Temperature Thermoelectric Performance in Te-Doped Electronegative Element-Filled Skutterudites via Suppressing Bipolar Effects and Enhanced Phonon Scattering.
    Chen Z; Yuan M; Lyu J; Yang W; Ren Z; Li J; Zhao Z; Yang H; Shuai J; Hou Y
    ACS Appl Mater Interfaces; 2024 Sep; 16(38):50905-50915. PubMed ID: 39269847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thermoelectric properties of Au nanoparticle-incorporated Al-doped mesoporous ZnO thin films.
    Hong MH; Han W; Lee KY; Park HH
    R Soc Open Sci; 2019 May; 6(5):181799. PubMed ID: 31218027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impurity Removal Leading to High-Performance CoSb
    Li XG; Liu WD; Li SM; Li D; Zhong H; Chen ZG
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54185-54193. PubMed ID: 34735110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Fe ion implantation on the thermoelectric properties and electronic structures of CoSb
    Masarrat A; Bhogra A; Meena R; Bala M; Singh R; Barwal V; Dong CL; Chen CL; Som T; Kumar A; Niazi A; Asokan K
    RSC Adv; 2019 Nov; 9(62):36113-36122. PubMed ID: 35540568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Thermoelectric Properties of SrTiO
    Sikam P; Thirayatorn R; Kaewmaraya T; Thongbai P; Moontragoon P; Ikonic Z
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of
    Kato A; Bourgès C; Pang H; Gutiérrez D; Sakurai T; Mori T
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the Doping Efficiency in Pentacene Thin Films for High Thermoelectric Performance.
    Xing W; Wu S; Liang Y; Sun Y; Zou Y; Liu L; Xu W; Zhu D
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29540-29548. PubMed ID: 32506899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Si Doping Promoting Thermoelectric Performance of Yb-Filled CoSb
    Qin D; Shi W; Lu Y; Cai W; Sui J
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):30901-30906. PubMed ID: 35767690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films.
    Tran Nguyen NH; Nguyen TH; Liu YR; Aminzare M; Pham AT; Cho S; Wong DP; Chen KH; Seetawan T; Pham NK; Ta HK; Tran VC; Phan TB
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33916-33923. PubMed ID: 27960402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms.
    Han MK; Jin Y; Lee DH; Kim SJ
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29072613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Thermoelectric Performance of Non-Stoichiometric and Oriented GeTe Thin Films.
    Zhang X; Lu X; Jiang P; Bao X
    Small; 2023 Dec; 19(49):e2303710. PubMed ID: 37612819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt doping to improve thermoelectric power factor of organic nanocomposite thin films.
    Stevens DL; Gamage GA; Ren Z; Grunlan JC
    RSC Adv; 2020 Mar; 10(20):11800-11807. PubMed ID: 35496596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement in Thermoelectric Performance in Ti-doped Yb
    Dadhich A; Saminathan M; Muthiah S; Bhui A; Perumal S; Rao MSR; Sethupathi K
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37916737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.