These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36770372)

  • 1. Internal Explosion Performance of RDX@Nano-B Composite Explosives.
    Xi P; Sun S; Shang Y; Wang X; Dong J; Feng X
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Green" PBX Formulations Based on High Explosives (RDX and HMX) and Water-Soluble pH-Sensitive Polymeric Binders.
    Rotariu T; Moldovan AE; Toader G; Diacon A; Rusen E; Ginghina RE; Iorga O; Botiș HR; Klapötke T
    Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Nano Aluminum Powder on the Mechanical Sensitivity of RDX-Based Explosives.
    Dong J; Wang W; Wang X; Zhou Q; Miao R; Du M; Tan B; Wang Y; Zhang T; Li Y; Cao F
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy.
    Rezaei AH; Keshavarz MH; Tehrani MK; Reza Darbani SM; Farhadian AH; Mousavi SJ; Mousaviazar A
    Appl Opt; 2016 Apr; 55(12):3233-40. PubMed ID: 27140093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) from polymer-bonded explosives (PBXN-109) into water by artificial weathering.
    Kumar M; Ladyman MK; Mai N; Temple T; Coulon F
    Chemosphere; 2017 Feb; 169():604-608. PubMed ID: 27907880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of High-Quality RDX on the Safety and Mechanical Properties of Pressed PBX.
    Chen S; Qian H; Liu B; Xu F; Rui J; Liu D
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP
    Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Energetic Materials-Hosted 3D Inverse Opal-like Porous Carbon: Stabilization/Desensitization of Explosives.
    Shin MK; Kim MH; Kim GY; Kang B; Chae JS; Haam S
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43857-43864. PubMed ID: 30475574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical prediction of steady-state detonation properties of condensed-phase explosives.
    Cengiz F; Ulas A
    J Hazard Mater; 2009 Dec; 172(2-3):1646-51. PubMed ID: 19747772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct ink writing of high explosive composites containing metal-organic frameworks.
    Kim EY; Kim SH; Han M; Moon SY
    RSC Adv; 2024 Oct; 14(43):31461-31466. PubMed ID: 39372057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Recent advances in stable isotope ratio analysis of common explosives].
    Hu C; Mei H; Guo H; Sun Z; Liu Z; Zhu J
    Se Pu; 2021 Apr; 39(4):376-383. PubMed ID: 34227757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.
    Liu YR; Duan ZP; Zhang ZY; Ou ZC; Huang FL
    J Hazard Mater; 2016 Nov; 317():44-51. PubMed ID: 27258213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamic simulations on the structures and properties of epsilon-CL-20(0 0 1)/F 2314 PBX.
    Xu X; Xiao J; Huang H; Li J; Xiao H
    J Hazard Mater; 2010 Mar; 175(1-3):423-8. PubMed ID: 19954888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of glycidyl azide polymer on the stability and explosive properties of different interesting nitramines.
    Hussein AK; Elbeih A; Zeman S
    RSC Adv; 2018 May; 8(31):17272-17278. PubMed ID: 35539220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TNT equivalency in an internal explosion event.
    Edri IE; Grisaro HY; Yankelevsky DZ
    J Hazard Mater; 2019 Jul; 374():248-257. PubMed ID: 31005707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In operando measurements of high explosives.
    Sellan D; Zhou X; Salvati L; Valluri SK; Dlott DD
    J Chem Phys; 2022 Dec; 157(22):224202. PubMed ID: 36546820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Reactivity and Compound Mechanism of Mg/B Composite Powders Prepared by Cryomilling.
    Zhang C; Wang Q; Tang L; Chen F
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of thermal decomposition for RDX, TNT, and Composition B.
    Kim SH; Nyande BW; Kim HS; Park JS; Lee WJ; Oh M
    J Hazard Mater; 2016 May; 308():120-30. PubMed ID: 26808250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of detonation performance of CHNO and CHNOAl explosives through molecular structure.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):1296-301. PubMed ID: 19157709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of RDX/F2311/Fe
    Zhang Z; Jiang D; Yang L; Song W; Wang R; Huang Q
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.