These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36770372)

  • 21. Microcomputed X-Ray Tomographic Imaging and Image Processing for Microstructural Characterization of Explosives.
    Yeager JD; Kuettner LA; Duque AL; Hill LG; Patterson BM
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33053842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives.
    Mei Z; An Q; Zhao FQ; Xu SY; Ju XH
    Phys Chem Chem Phys; 2018 Nov; 20(46):29341-29350. PubMed ID: 30444501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trace explosive residue detection of HMX and RDX in post-detonation dust from an open-air environment.
    Denis EH; Morrison KA; Wharton S; Phillips S; Myers SC; Foxe MP; Ewing RG
    Talanta; 2021 May; 227():122124. PubMed ID: 33714459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic Enhancement on Ignition and Combustion Properties of Boron via Viton Core-Shell Coating.
    Liu Y; Wang W; Zhao B; Chen B; Wang Y; Yan Q
    Langmuir; 2024 Jun; 40(23):12239-12249. PubMed ID: 38819103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer code for the optimization of performance parameters of mixed explosive formulations.
    Muthurajan H; Sivabalan R; Talawar MB; Venugopalan S; Gandhe BR
    J Hazard Mater; 2006 Aug; 136(3):475-81. PubMed ID: 16530944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The stability of TNT, RDX and PETN in simulated post-explosion soils: Implications of sample preparation for analysis.
    Yu HA; DeTata DA; Lewis SW; Nic Daeid N
    Talanta; 2017 Mar; 164():716-726. PubMed ID: 28107996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simple determination of performance of explosives without using any experimental data.
    Keshavarz MH
    J Hazard Mater; 2005 Mar; 119(1-3):25-9. PubMed ID: 15752845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I.
    Keshavarz MH; Motamedoshariati H; Moghayadnia R; Nazari HR; Azarniamehraban J
    J Hazard Mater; 2009 Dec; 172(2-3):1218-28. PubMed ID: 19713037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decomposition and Energy-Enhancement Mechanism of the Energetic Binder Glycidyl Azide Polymer at Explosive Detonation Temperatures.
    Liu D; Geng D; Yang K; Lu J; Chan SHY; Chen C; Hng HH; Chen L
    J Phys Chem A; 2020 Jul; 124(27):5542-5554. PubMed ID: 32436383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of internal phase particle size on properties of site mixed emulsion explosive at plateau environment.
    Xie SD; Cai XY; Wu HB; Wang Q; Guo ZR; Chen ZY; Ma CS
    Sci Rep; 2024 Apr; 14(1):8549. PubMed ID: 38609459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation.
    Chatterjee S; Deb U; Datta S; Walther C; Gupta DK
    Chemosphere; 2017 Oct; 184():438-451. PubMed ID: 28618276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of Supercritical CO
    Tan D; Wang Y; Guo B; Chen F; Wei X
    ACS Omega; 2021 Nov; 6(45):30555-30561. PubMed ID: 34805684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning the initial mechanical response of composite material: structure evolution and energy profile of a plastic bonded explosive under rapid loading.
    Wang L; Zhong K; Ma J; Liu J; Xu H
    J Mol Model; 2019 Jan; 25(2):31. PubMed ID: 30617721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An advanced furoxan-bridged heat-resistant explosive.
    Li C; Zhu T; Tang J; Lei C; Yu G; Yang Y; Yang H; Xiao C; Cheng G
    Mater Horiz; 2024 Nov; 11(22):5701-5708. PubMed ID: 39233605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials.
    Muthurajan H; Sivabalan R; Talawar MB; Asthana SN
    J Hazard Mater; 2004 Aug; 112(1-2):17-33. PubMed ID: 15225927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energetic Nitrate-Based Polymer-Bonded Explosives Derived from Sustainable Aza-Michael Reactions.
    Sheela G; Periya VK; Gopalakrishnan S; Sasidharakurup R
    ACS Omega; 2024 May; 9(20):22065-22073. PubMed ID: 38799311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of explosive nanoparticles in a porous chromium(III) oxide matrix: a first attempt to control the reactivity of explosives.
    Comet M; Siegert B; Pichot V; Gibot P; Spitzer D
    Nanotechnology; 2008 Jul; 19(28):285716. PubMed ID: 21828750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of comprehensive two-dimensional liquid chromatography for investigating aging of plastic bonded explosives.
    Freye CE; Rosales CJ; Thompson DG; Brown GW; Larson SA
    J Chromatogr A; 2020 Jan; 1611():460580. PubMed ID: 31601423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of new energetic materials based on derivatives of 1,3,5-trinitrobenzenes: A theoretical and computational prediction of detonation properties, blast impulse and combustion parameters.
    Balachandar KG; Thangamani A
    Heliyon; 2020 Jan; 6(1):e03163. PubMed ID: 31934653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.