These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36770392)

  • 1. Carbon Hybrid Materials-Design, Manufacturing, and Applications.
    Pujari A; Chauhan D; Chitranshi M; Hudepohl R; Kubley A; Shanov V; Schulz M
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Nanotube Sheet-Synthesis and Applications.
    Chitranshi M; Pujari A; Ng V; Chen D; Chauhan D; Hudepohl R; Saleminik M; Kim SY; Kubley A; Shanov V; Schulz M
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33066526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2627-2637. PubMed ID: 33821604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties.
    Hossain MM; Islam MA; Shima H; Hasan M; Lee M
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5530-5542. PubMed ID: 28106367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of the mechanical and thermal transport properties of carbon nanotube yarns by boundary structure modulation.
    Shikata R; Suzuki H; Hayashi Y; Hasegawa T; Shigeeda Y; Inoue H; Yajima W; Kametaka J; Maetani M; Tanaka Y; Nishikawa T; Maeda S; Hayashi Y; Hada M
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35196260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications.
    Liu L; Ma W; Zhang Z
    Small; 2011 Jun; 7(11):1504-20. PubMed ID: 21506264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Carbon Fibers with a Macroscopic-Thickness, 3D Highly Porous Carbon Nanotube Coating.
    Zou M; Zhao W; Wu H; Zhang H; Xu W; Yang L; Wu S; Wang Y; Chen Y; Xu L; Cao A
    Adv Mater; 2018 Mar; 30(13):e1704419. PubMed ID: 29457308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics.
    Giri P; Kondapalli VKR; Joseph KM; Shanov V; Schulz M
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Sensing Cementitious Composites with Hierarchical Carbon Fiber-Carbon Nanotube Composite Fillers for Crack Development Monitoring of a Maglev Girder.
    Ding S; Wang X; Qiu L; Ni YQ; Dong X; Cui Y; Ashour A; Han B; Ou J
    Small; 2023 Mar; 19(9):e2206258. PubMed ID: 36538746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube.
    Rodiles X; Reguero V; Vila M; Alemán B; Arévalo L; Fresno F; O'Shea VAP; Vilatela JJ
    Sci Rep; 2019 Jun; 9(1):9239. PubMed ID: 31239459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Emission and Exposure Measurements of Multi-walled Carbon Nanotubes during Production, Power Sawing, and Testing of Epoxy-Based Nanocomposites.
    Hedmer M; Lovén K; Martinsson J; Messing ME; Gudmundsson A; Pagels J
    Ann Work Expo Health; 2022 Aug; 66(7):878-894. PubMed ID: 35297480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous flow chemical vapour deposition of carbon nanotube sea urchins.
    de La Verpilliere J; Jessl S; Saeed K; Ducati C; De Volder M; Boies A
    Nanoscale; 2018 Apr; 10(16):7780-7791. PubMed ID: 29662980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties.
    Tsentalovich DE; Headrick RJ; Mirri F; Hao J; Behabtu N; Young CC; Pasquali M
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36189-36198. PubMed ID: 28937741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes.
    Liu M; Du Y; Miao YE; Ding Q; He S; Tjiu WW; Pan J; Liu T
    Nanoscale; 2015 Jan; 7(3):1037-46. PubMed ID: 25474256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Properties of Carbon Fiber/Carbon Nanotube Wet-Laid Composites.
    Lee S; Ko K; Youk J; Lim D; Jeong W
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31574909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube and graphene multiple-thread yarns.
    Zhong X; Wang R; Yangyang W; Yali L
    Nanoscale; 2013 Feb; 5(3):1183-7. PubMed ID: 23299393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Carbon Nanotubes on the Mechanical, Crystallization, Electrical and Thermal Conductivity Properties of CNT/CCF/PEKK Composites.
    Yan X; Qiao L; Tan H; Tan H; Liu C; Zhu K; Lin Z; Xu S
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.