These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36770453)

  • 1. Fano-Like Resonance of Heat-Reconfigurable Silicon Grating Metasurface Tuned by Laser-Induced Graphene.
    Ma Y; Huang Y; Zhu Y; Zhou H; Yan C; Wang S; Deng G; Zhou S
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO
    He Z; Xue W; Cui W; Li C; Li Z; Pu L; Feng J; Xiao X; Wang X; Li AG
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32260584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Fano resonance switch using dual-layer graphene in an embedded dielectric metasurface.
    Seo D; Lee JK; Park GC
    Opt Express; 2022 Jun; 30(12):22247-22259. PubMed ID: 36224927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip.
    Zhang W; Li W; Yao J
    Opt Lett; 2016 Jun; 41(11):2474-7. PubMed ID: 27244392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge
    Zhu W; Fan Y; Li C; Yang R; Yan S; Fu Q; Zhang F; Gu C; Li J
    Nanoscale; 2020 Apr; 12(16):8758-8767. PubMed ID: 32091041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-Selective Bidirectional Absorption Based on a Bilayer Plasmonic Metasurface.
    Li T; Chen BQ; He Q; Bian LA; Shang XJ; Song GF
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles.
    Bakhti S; Tishchenko AV; Zambrana-Puyalto X; Bonod N; Dhuey SD; Schuck PJ; Cabrini S; Alayoglu S; Destouches N
    Sci Rep; 2016 Sep; 6():32061. PubMed ID: 27580515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Fano Resonance and Independent Regulation Characteristics in a Rectangular-like Nanotetramer Metasurface Structure.
    Zhang Z; Zhang Q; Li B; Zang J; Cao X; Zhao X; Xue C
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials.
    Liu B; Tang C; Chen J; Zhu M; Pei M; Zhu X
    Sci Rep; 2017 Dec; 7(1):17117. PubMed ID: 29215032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform.
    Zheng S; Ruan Z; Gao S; Long Y; Li S; He M; Zhou N; Du J; Shen L; Cai X; Wang J
    Opt Express; 2017 Oct; 25(21):25655-25662. PubMed ID: 29041230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fano-like coupling between two oppositely enhanced processes by diffraction in a dielectric grating.
    Zhang J; Zhang X
    Opt Express; 2015 Nov; 23(23):30429-37. PubMed ID: 26698522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates.
    Chen H; Shao L; Ming T; Woo KC; Man YC; Wang J; Lin HQ
    ACS Nano; 2011 Aug; 5(8):6754-63. PubMed ID: 21786827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable sensor and nanoantenna by graphene-tuned Fano resonance.
    Wang CL; Wang YQ; Hu H; Liu DJ; Gao DL; Gao L
    Opt Express; 2019 Nov; 27(24):35925-35934. PubMed ID: 31878757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive Oligonucleotide Detection Using Resonant Coupling between Fano Resonance and Image Dipoles of Gold Nanoparticles.
    Kuo CW; Wang SH; Lo SC; Yong WH; Ho YL; Delaunay JJ; Tsai WS; Wei PK
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14012-14024. PubMed ID: 35297595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow-light effects based on the tunable Fano resonance in a Tamm state coupled graphene surface plasmon system.
    Ruan B; Li M; Liu C; Gao E; Zhang Z; Chang X; Zhang B; Li H
    Phys Chem Chem Phys; 2023 Jan; 25(3):1685-1689. PubMed ID: 36541662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka.
    Liaw JW; Chen HC; Kuo MK
    Nanoscale Res Lett; 2013 Nov; 8(1):468. PubMed ID: 24206789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strengthening Fano resonance on gold nanoplates with gold nanospheres.
    Cui X; Lai Y; Qin F; Shao L; Wang J; Lin HQ
    Nanoscale; 2020 Jan; 12(3):1975-1984. PubMed ID: 31912072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Coupled Modes in a Metal-Dielectric Periodic Nanostructure.
    Coello V; Abdulkareem MA; Garcia-Ortiz CE; Sosa-Sánchez CT; Téllez-Limón R; Peña-Gomar M
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayer graphene sensing enabled by the strong Fano-resonant metasurface.
    Li Q; Cong L; Singh R; Xu N; Cao W; Zhang X; Tian Z; Du L; Han J; Zhang W
    Nanoscale; 2016 Oct; 8(39):17278-17284. PubMed ID: 27714077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally tunable ultracompact Fano resonator on a silicon photonic chip.
    Zhang W; Yao J
    Opt Lett; 2018 Nov; 43(21):5415-5418. PubMed ID: 30383021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.