These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36770481)
1. Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties. Supanakorn G; Taokaew S; Phisalaphong M Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770481 [TBL] [Abstract][Full Text] [Related]
2. Dialdehyde Cellulose Solution as Reducing Agent: Preparation of Uniform Silver Nanoparticles and In Situ Synthesis of Antibacterial Composite Films with High Barrier Properties. Zeng J; Xiong X; Hu F; Li J; Li P Molecules; 2023 Mar; 28(7):. PubMed ID: 37049719 [TBL] [Abstract][Full Text] [Related]
3. Effect of Reduction Methods on the Properties of Composite Films of Bacterial Cellulose-Silver Nanoparticles. Jenkhongkarn R; Phisalaphong M Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514387 [TBL] [Abstract][Full Text] [Related]
4. Incorporation of silver nanoparticles/curcumin/clay minerals into chitosan film for enhancing mechanical properties, antioxidant and antibacterial activity. Li S; Mu B; Zhang H; Kang Y; Wang A Int J Biol Macromol; 2022 Dec; 223(Pt A):779-789. PubMed ID: 36370856 [TBL] [Abstract][Full Text] [Related]
5. PMMA particles coated with chitosan-silver nanoparticles as a dual antibacterial modifier for natural rubber latex films. Suteewong T; Wongpreecha J; Polpanich D; Jangpatarapongsa K; Kaewsaneha C; Tangboriboonrat P Colloids Surf B Biointerfaces; 2019 Feb; 174():544-552. PubMed ID: 30500743 [TBL] [Abstract][Full Text] [Related]
6. Conductive and antibacterial films by loading reduced graphene oxide/silver nanoparticles on cellulose nanofiber films. Hua Y; Liu C; Tang Y Int J Biol Macromol; 2023 Jul; 242(Pt 1):124752. PubMed ID: 37156316 [TBL] [Abstract][Full Text] [Related]
7. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes. Xu X; Yang YQ; Xing YY; Yang JF; Wang SF Carbohydr Polym; 2013 Nov; 98(2):1573-7. PubMed ID: 24053842 [TBL] [Abstract][Full Text] [Related]
8. The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial, and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Rozilah A; Jaafar CNA; Sapuan SM; Zainol I; Ilyas RA Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33171913 [TBL] [Abstract][Full Text] [Related]
9. Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy. Gollapudi KK; Dutta SD; Adnan M; Taylor ML; Reddy KVNS; Alle M; Huang X Int J Biol Macromol; 2024 Nov; 280(Pt 4):135971. PubMed ID: 39322171 [TBL] [Abstract][Full Text] [Related]
10. Cellulose hybrid nanocomposites using Napier grass fibers with in situ generated silver nanoparticles as fillers for antibacterial applications. Indira Devi MP; Nallamuthu N; Rajini N; Varada Rajulu A; Hari Ram N; Siengchin S Int J Biol Macromol; 2018 Oct; 118(Pt A):99-106. PubMed ID: 29883698 [TBL] [Abstract][Full Text] [Related]
11. Preparation of cellulosic Ag-nanocomposites using an ionic liquid. Tayyab Z; Safi SZ; Rahim A; Khan AS; Sharif F; Khan ZUH; Rehman F; Ullah Z; Iqbal J; Muhammad N J Biomater Sci Polym Ed; 2019; 30(9):785-796. PubMed ID: 31018777 [TBL] [Abstract][Full Text] [Related]
12. Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of their Antibacterial and Antioxidant Properties. Rigopoulos N; Thomou E; Kouloumpis Α; Lamprou ER; Petropoulea V; Gournis D; Poulios E; Karantonis HC; Giaouris E Curr Pharm Biotechnol; 2019; 20(10):858-873. PubMed ID: 30526454 [TBL] [Abstract][Full Text] [Related]
13. Plasma-Assisted Synthesis of Multicomponent Nanoparticles Containing Carbon, Tungsten Carbide and Silver as Multifunctional Filler for Polylactic Acid Composite Films. Boonyeun N; Rujiravanit R; Saito N Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33804863 [TBL] [Abstract][Full Text] [Related]
14. Characterizations and application of CA/ZnO/AgNP composite nanofibers for sustained antibacterial properties. Jatoi AW; Kim IS; Ogasawara H; Ni QQ Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110077. PubMed ID: 31546450 [TBL] [Abstract][Full Text] [Related]
15. Preparation of TEMPO-oxidized cellulose/amino acid/nanosilver biocomposite film and its antibacterial activity. Huang M; Chen F; Jiang Z; Li Y Int J Biol Macromol; 2013 Nov; 62():608-13. PubMed ID: 24141071 [TBL] [Abstract][Full Text] [Related]
16. Bioinspired multiscale cellulose/lignin-silver composite films with robust mechanical, antioxidant and antibacterial properties for ultraviolet shielding. Wang K; Liu K; Dai L; Si C Int J Biol Macromol; 2024 Feb; 258(Pt 2):129046. PubMed ID: 38154714 [TBL] [Abstract][Full Text] [Related]
17. High antibacterial activity of chitosan films with covalent organic frameworks immobilized silver nanoparticles. Dai X; Li S; Li S; Ke K; Pang J; Wu C; Yan Z Int J Biol Macromol; 2022 Mar; 202():407-417. PubMed ID: 34999048 [TBL] [Abstract][Full Text] [Related]
18. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. He Y; Li H; Fei X; Peng L Carbohydr Polym; 2021 Jan; 252():117156. PubMed ID: 33183607 [TBL] [Abstract][Full Text] [Related]
19. Antibacterial composite paper with corn stalk-based carbon spheres immobilized AgNPs. Jiang Q; Luo B; Wu Z; Wang X Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111012. PubMed ID: 32487414 [TBL] [Abstract][Full Text] [Related]
20. Effect of Kaolin clay and Ficus carica mediated silver nanoparticles on chitosan food packaging film for fresh apple slice preservation. Mouzahim ME; Eddarai EM; Eladaoui S; Guenbour A; Bellaouchou A; Zarrouk A; Boussen R Food Chem; 2023 Jun; 410():135470. PubMed ID: 36652798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]