BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36770784)

  • 1. Influence of InP/ZnS Quantum Dots on Thermodynamic Properties and Morphology of the DPPC/DPPG Monolayers at Different Temperatures.
    Wang J; Feng S; Sheng Q; Liu R
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Carboxyl or Amino Group Modified InP/ZnS Nanoparticles Toward Simulated Lung Surfactant Membrane.
    Wang J; Feng S; Liu J; Liu RL
    Front Bioeng Biotechnol; 2021; 9():714922. PubMed ID: 34490224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitonic Energy Transfer within InP/ZnS Quantum Dot Langmuir-Blodgett Assemblies.
    Bahmani Jalali H; Melikov R; Sadeghi S; Nizamoglu S
    J Phys Chem C Nanomater Interfaces; 2018 Jun; 122(22):11616-11622. PubMed ID: 30057655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Electron Transfer in InP/ZnSe/ZnS Quantum Dots for Photocatalytic Hydrogen Evolution.
    Zeng S; Tan W; Si J; Mao L; Shi J; Li Y; Hou X
    J Phys Chem Lett; 2022 Oct; 13(39):9096-9102. PubMed ID: 36154010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity of InP/ZnS Quantum Dots With Different Surface Functional Groups Toward Two Lung-Derived Cell Lines.
    Chen T; Li L; Xu G; Wang X; Wang J; Chen Y; Jiang W; Yang Z; Lin G
    Front Pharmacol; 2018; 9():763. PubMed ID: 30057549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodistribution and acute toxicity of cadmium-free quantum dots with different surface functional groups in mice following intratracheal inhalation.
    Lin G; Chen T; Pan Y; Yang Z; Li L; Yong KT; Wang X; Wang J; Chen Y; Jiang W; Weng S; Huang X; Kuang J; Xu G
    Nanotheranostics; 2020; 4(3):173-183. PubMed ID: 32483522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematical investigation of in vitro interaction of InP/ZnS quantum dots with human serum albumin by multispectroscopic approach.
    Huang S; Qiu H; Liu Y; Huang C; Sheng J; Cui J; Su W; Xiao Q
    Colloids Surf B Biointerfaces; 2016 Dec; 148():165-172. PubMed ID: 27595891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation for Adverse Effects of InP/ZnS Quantum Dots on the in Vitro Cultured Oocytes of Mice.
    Ye X; Li L; Wu J; Ma M; Lin G; Wang X; Xu G
    ACS Appl Bio Mater; 2019 Oct; 2(10):4193-4201. PubMed ID: 35021434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth.
    Lim K; Jang HS; Woo K
    Nanotechnology; 2012 Dec; 23(48):485609. PubMed ID: 23138715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InP/ZnS quantum dots cause liver damage in rare minnow (Gobiocypris rarus) larvae.
    Chen H; Wu Y; Xie W; Chen J; Jin L
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Apr; 266():109546. PubMed ID: 36717047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. InP/ZnS Quantum Dots Cause Inflammatory Response in Macrophages Through Endoplasmic Reticulum Stress and Oxidative stress.
    Chen S; Chen Y; Chen Y; Yao Z
    Int J Nanomedicine; 2019; 14():9577-9586. PubMed ID: 31824152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of chitin nanoparticles on surface behavior of DPPC/DPPG Langmuir monolayers.
    Wang R; Guo Y; Liu H; Chen Y; Shang Y; Liu H
    J Colloid Interface Sci; 2018 Jun; 519():186-193. PubMed ID: 29499455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source.
    Byun HJ; Song WS; Yang H
    Nanotechnology; 2011 Jun; 22(23):235605. PubMed ID: 21483087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology of Mixed Langmuir and Langmuir-Schaefer Monolayers with Covered CdSe/CdS/ZnS Quantum Dots and Arachidic Acid.
    Gorbachev IA; Smirnov AV; Glukhovskoy EG; Kolesov VV; Ivanov GR; Kuznetsova IE
    Langmuir; 2021 Dec; 37(48):14105-14113. PubMed ID: 34793676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin.
    Sannaikar MS; Inamdar LS; Pujar GH; Wari MN; Balasinor NH; Inamdar SR
    Luminescence; 2018 May; 33(3):495-504. PubMed ID: 29282888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An In Vitro Investigation of Cytotoxic Effects of InP/Zns Quantum Dots with Different Surface Chemistries.
    Ayupova D; Dobhal G; Laufersky G; Nann T; Goreham RV
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Brightness Matched Indium Phosphide Quantum Dots.
    Toufanian R; Chern M; Kong VH; Dennis AM
    Chem Mater; 2021 Mar; 33(6):1964-1975. PubMed ID: 34219920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Bright Silica-Coated InP/ZnS Quantum Dot-Embedded Silica Nanoparticles as Biocompatible Nanoprobes.
    Ham KM; Kim M; Bock S; Kim J; Kim W; Jung HS; An J; Song H; Kim JW; Kim HM; Rho WY; Lee SH; Park SM; Kim DE; Jun BH
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear optical properties of InP/ZnS core-shell quantum dots.
    Wang C; Niu R; Zhou Z; Wu W; Chai Z; Song Y; Kong D
    Nanotechnology; 2020 Mar; 31(13):135001. PubMed ID: 31810071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.