These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36770793)
1. The Role of Molecular Structure in Monte Carlo Simulations of the Secondary Electron Yield and Backscattering Coefficient from Methacrylic Acid. Wiciak-Pawłowska K; Winiarska A; Taioli S; Dapor M; Franz M; Franz J Molecules; 2023 Jan; 28(3):. PubMed ID: 36770793 [TBL] [Abstract][Full Text] [Related]
2. A comparative study on Monte Carlo simulations of electron emission from liquid water. Mehnaz ; Yang LH; Zou YB; Da B; Mao SF; Li HM; Zhao YF; Ding ZJ Med Phys; 2020 Feb; 47(2):759-771. PubMed ID: 31702062 [TBL] [Abstract][Full Text] [Related]
3. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons. Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899 [TBL] [Abstract][Full Text] [Related]
4. Composition dependence of penetration range and backscattering coefficient of electrons impinging on Si Khan MA; Algarni H; Bouarissa N; Al-Hagan OA; Alhuwaymel TF Ultramicroscopy; 2018 Dec; 195():53-57. PubMed ID: 30193226 [TBL] [Abstract][Full Text] [Related]
5. Detailed Monte Carlo Simulation of electron transport and electron energy loss spectra. Attarian Shandiz M; Salvat F; Gauvin R Scanning; 2016 Nov; 38(6):475-491. PubMed ID: 26512795 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo simulation of backscatter from lead for clinical electron beams using EGSnrc. Chow JC; Grigorov GN Med Phys; 2008 Apr; 35(4):1241-50. PubMed ID: 18491516 [TBL] [Abstract][Full Text] [Related]
7. An accurate approximation for the highly efficient sampling of polar scattering angle of electron elastic single-scattering events. Pasciak AS; Ford JR Scanning; 2006; 28(6):333-41. PubMed ID: 17181135 [TBL] [Abstract][Full Text] [Related]
8. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes. Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947 [TBL] [Abstract][Full Text] [Related]
9. Energy-loss straggling algorithms for Monte Carlo electron transport. Chibani O Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312 [TBL] [Abstract][Full Text] [Related]
10. Positron backscattering from solid targets: Modeling of scattering processes via various approaches. Kribaa B; Rouabah Z; Loirec CL; Champion C; Bouarissa N Micron; 2016 Aug; 87():46-50. PubMed ID: 27200485 [TBL] [Abstract][Full Text] [Related]
11. Monte Carlo simulation of electron backscattering from compounds with low mean atomic number. Howell PG; Boyde A Scanning; 1998 Jan; 20(1):45-9. PubMed ID: 9493414 [TBL] [Abstract][Full Text] [Related]
12. The sensitivity of backscattering coefficients to elastic scattering cross-sections and electron stopping powers. Walker CG; Matthew JA; El-Gomati MM Scanning; 2014; 36(2):241-5. PubMed ID: 23649939 [TBL] [Abstract][Full Text] [Related]
13. Scanning electron microscope imaging in liquids - some data on electron interactions in water. Joy DC; Joy CS J Microsc; 2006 Feb; 221(Pt 2):84-8. PubMed ID: 16499548 [TBL] [Abstract][Full Text] [Related]
14. The energy-dependent electron loss model: backscattering and application to heterogeneous slab media. Lee TK; Sandison GA Phys Med Biol; 2003 Jan; 48(2):259-73. PubMed ID: 12587908 [TBL] [Abstract][Full Text] [Related]
15. Characterization of photoneutron fluxes emitted by electron accelerators in the 4-20 MeV range using Monte Carlo codes: A critical review. Sari A Appl Radiat Isot; 2023 Jan; 191():110506. PubMed ID: 36370471 [TBL] [Abstract][Full Text] [Related]
16. Single pencil beam benchmark of a module for Monte Carlo simulation of proton transport in the PENELOPE code. Verbeek N; Wulff J; Bäumer C; Smyczek S; Timmermann B; Brualla L Med Phys; 2021 Jan; 48(1):456-476. PubMed ID: 33217026 [TBL] [Abstract][Full Text] [Related]
17. Comparison and assessment of electron cross sections for Monte Carlo track structure codes. Uehara S; Nikjoo H; Goodhead DT Radiat Res; 1999 Aug; 152(2):202-13. PubMed ID: 10409331 [TBL] [Abstract][Full Text] [Related]
18. Simulation of electron transport during electron-beam-induced deposition of nanostructures. Salvat-Pujol F; Jeschke HO; Valentí R Beilstein J Nanotechnol; 2013; 4():781-92. PubMed ID: 24367747 [TBL] [Abstract][Full Text] [Related]
19. Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM. Ruan Z; Zeng RG; Ming Y; Zhang M; Da B; Mao SF; Ding ZJ Phys Chem Chem Phys; 2015 Jul; 17(27):17628-37. PubMed ID: 26082190 [TBL] [Abstract][Full Text] [Related]
20. SU-E-T-489: Quantum versus Classical Trajectory Monte Carlo Simulations of Low Energy Electron Transport. Thomson R; Kawrakow I Med Phys; 2012 Jun; 39(6Part17):3817-3818. PubMed ID: 28517446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]