BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36770857)

  • 21. MIND-BEST: Web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae.
    González-Díaz H; Prado-Prado F; García-Mera X; Alonso N; Abeijón P; Caamaño O; Yáñez M; Munteanu CR; Pazos A; Dea-Ayuela MA; Gómez-Muñoz MT; Garijo MM; Sansano J; Ubeira FM
    J Proteome Res; 2011 Apr; 10(4):1698-718. PubMed ID: 21184613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bambu and its applications in the discovery of active molecules against melanoma.
    Guidotti IL; Neis A; Martinez DP; Seixas FK; Machado K; Kremer FS
    J Mol Graph Model; 2023 Nov; 124():108564. PubMed ID: 37453311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives.
    Ghaemian P; Shayanfar A
    Curr Comput Aided Drug Des; 2019; 15(3):212-224. PubMed ID: 30280673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. QSAR/QSPR as an application of artificial neural networks.
    Montañez-Godínez N; Martínez-Olguín AC; Deeb O; Garduño-Juárez R; Ramírez-Galicia G
    Methods Mol Biol; 2015; 1260():319-33. PubMed ID: 25502390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elucidating the mechanism of action of mycotoxins through machine learning-driven QSAR models: Focus on lipid peroxidation.
    Galvez-Llompart M; Zanni R; Manyes L; Meca G
    Food Chem Toxicol; 2023 Dec; 182():114120. PubMed ID: 37944785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Neural Networks for QSAR.
    Xu Y
    Methods Mol Biol; 2022; 2390():233-260. PubMed ID: 34731472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout.
    Mendenhall J; Meiler J
    J Comput Aided Mol Des; 2016 Feb; 30(2):177-89. PubMed ID: 26830599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. VISAR: an interactive tool for dissecting chemical features learned by deep neural network QSAR models.
    Ding Q; Hou S; Zu S; Zhang Y; Li S
    Bioinformatics; 2020 Jun; 36(11):3610-3612. PubMed ID: 32170933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition.
    Reddy AS; Kumar S; Garg R
    J Mol Graph Model; 2010 Jun; 28(8):852-62. PubMed ID: 20399695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning.
    Xu T; Coco G; Neale M
    Water Res; 2020 Jun; 177():115788. PubMed ID: 32330740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. QSAR modelling using combined simple competitive learning networks and RBF neural networks.
    Sheikhpour R; Sarram MA; Rezaeian M; Sheikhpour E
    SAR QSAR Environ Res; 2018 Apr; 29(4):257-276. PubMed ID: 29372662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictive QSAR modeling of CCR5 antagonist piperidine derivatives using chemometric tools.
    Roy K; Mandal AS
    J Enzyme Inhib Med Chem; 2009 Feb; 24(1):205-23. PubMed ID: 18608745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ChemModLab: a web-based cheminformatics modeling laboratory.
    Hughes-Oliver JM; Brooks AD; Welch WJ; Khaledi MG; Hawkins D; Young SS; Patil K; Howell GW; Ng RT; Chu MT
    In Silico Biol; 2011-2012; 11(1-2):61-81. PubMed ID: 22475752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics.
    Ferreira da Costa J; Silva D; Caamaño O; Brea JM; Loza MI; Munteanu CR; Pazos A; García-Mera X; González-Díaz H
    ACS Chem Neurosci; 2018 Nov; 9(11):2572-2587. PubMed ID: 29791132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative structure-activity relationship: promising advances in drug discovery platforms.
    Wang T; Wu MB; Lin JP; Yang LR
    Expert Opin Drug Discov; 2015 Dec; 10(12):1283-300. PubMed ID: 26358617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloud 3D-QSAR: a web tool for the development of quantitative structure-activity relationship models in drug discovery.
    Wang YL; Wang F; Shi XX; Jia CY; Wu FX; Hao GF; Yang GF
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33140820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QSAR-Co: An Open Source Software for Developing Robust Multitasking or Multitarget Classification-Based QSAR Models.
    Ambure P; Halder AK; González Díaz H; Cordeiro MNDS
    J Chem Inf Model; 2019 Jun; 59(6):2538-2544. PubMed ID: 31083984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation Study of QSAR/DNN Models Using the Competition Datasets.
    Kato Y; Hamada S; Goto H
    Mol Inform; 2020 Jan; 39(1-2):e1900154. PubMed ID: 31802634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alignment-Free Method to Predict Enzyme Classes and Subclasses.
    Concu R; Cordeiro MNDS
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31671806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.