These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36771028)

  • 1. Degree of Coupling in Microwave-Heating Polar-Molecule Reactions.
    Liu X; Huang H; Yang L; Huang K
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36771028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Master Equation Analysis of Thermal and Nonthermal Microwave Effects.
    Ma J
    J Phys Chem A; 2016 Oct; 120(41):7989-7997. PubMed ID: 27689443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Fixed-bed Flow Reactions under Microwave Irradiation by Local Heating at the Vicinal Contact Points of Catalyst Particles.
    Haneishi N; Tsubaki S; Abe E; Maitani MM; Suzuki EI; Fujii S; Fukushima J; Takizawa H; Wada Y
    Sci Rep; 2019 Jan; 9(1):222. PubMed ID: 30659205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.
    Irfan M; Fuchs M; Glasnov TN; Kappe CO
    Chemistry; 2009 Nov; 15(43):11608-18. PubMed ID: 19774573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical assessment of methods for measurement of temperature profiles and heat load history in microwave heating processes-A review.
    Kalinke I; Kubbutat P; Taghian Dinani S; Ambros S; Ozcelik M; Kulozik U
    Compr Rev Food Sci Food Saf; 2022 May; 21(3):2118-2148. PubMed ID: 35338578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated modeling of microwave food processing and comparison with experimental measurements.
    Akarapu R; Li BQ; Huo Y; Tang J; Liu F
    J Microw Power Electromagn Energy; 2004; 39(3-4):153-65. PubMed ID: 16480158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Electric Field Distribution on the Heating Uniformity of a Model Ready-to-Eat Meal in Microwave-Assisted Thermal Sterilization Using the FDTD Method.
    Hong YK; Stanley R; Tang J; Bui L; Ghandi A
    Foods; 2021 Feb; 10(2):. PubMed ID: 33546232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the existence of and mechanism for microwave-specific reaction rate enhancement.
    Dudley GB; Richert R; Stiegman AE
    Chem Sci; 2015 Apr; 6(4):2144-2152. PubMed ID: 29308138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators.
    Razzaq T; Kremsner JM; Kappe CO
    J Org Chem; 2008 Aug; 73(16):6321-9. PubMed ID: 18613726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.
    Tasei Y; Tanigawa F; Kawamura I; Fujito T; Sato M; Naito A
    Phys Chem Chem Phys; 2015 Apr; 17(14):9082-9. PubMed ID: 25752926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal and Nonthermal Microwave Effects of Ethanol and Hexane-Mixed Solution as Revealed by In Situ Microwave Irradiation Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation.
    Tasei Y; Mijiddorj B; Fujito T; Kawamura I; Ueda K; Naito A
    J Phys Chem B; 2020 Oct; 124(43):9615-9624. PubMed ID: 33079541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ analysis of reaction kinetics of reduction promotion of NiMn
    Fukushima J; Takayama S; Goto H; Sato M; Takizawa H
    Phys Chem Chem Phys; 2017 Jul; 19(27):17904-17908. PubMed ID: 28660956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted green synthesis of silver nanostructures.
    Nadagouda MN; Speth TF; Varma RS
    Acc Chem Res; 2011 Jul; 44(7):469-78. PubMed ID: 21526846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial observation and quantification of microwave heating in materials.
    Crane CA; Pantoya ML; Weeks BL
    Rev Sci Instrum; 2013 Aug; 84(8):084705. PubMed ID: 24007086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum theory of chemical reactions in the presence of electromagnetic fields.
    Tscherbul TV; Krems RV
    J Chem Phys; 2008 Jul; 129(3):034112. PubMed ID: 18647021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical verification of nonthermal microwave effects on intramolecular reactions.
    Kanno M; Nakamura K; Kanai E; Hoki K; Kono H; Tanaka M
    J Phys Chem A; 2012 Mar; 116(9):2177-83. PubMed ID: 22332996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS).
    Rodríguez AM; Prieto P; de la Hoz A; Díaz-Ortiz Á; Martín DR; García JI
    ChemistryOpen; 2015 Jun; 4(3):308-17. PubMed ID: 26246993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.