These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36771038)
1. Evaluation of Hold-Up Volume Determination Methods and Markers in Hydrophilic Interaction Liquid Chromatography. Redón L; Subirats X; Rosés M Molecules; 2023 Feb; 28(3):. PubMed ID: 36771038 [TBL] [Abstract][Full Text] [Related]
2. HILIC characterization: Estimation of phase volumes and composition for a zwitterionic column. Redón L; Subirats X; Rosés M Anal Chim Acta; 2020 Sep; 1130():39-48. PubMed ID: 32892937 [TBL] [Abstract][Full Text] [Related]
3. Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. Redón L; Subirats X; Rosés M J Chromatogr A; 2021 Oct; 1656():462543. PubMed ID: 34571282 [TBL] [Abstract][Full Text] [Related]
4. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma. Sonnenberg RA; Naz S; Cougnaud L; Vuckovic D J Chromatogr A; 2019 Dec; 1608():460419. PubMed ID: 31439439 [TBL] [Abstract][Full Text] [Related]
5. A New Definition of the Stationary Phase Volume in Mixed-Mode Chromatographic Columns in Hydrophilic Liquid Chromatography. Jandera P; Hájek T Molecules; 2021 Aug; 26(16):. PubMed ID: 34443406 [TBL] [Abstract][Full Text] [Related]
6. Retention and mass transfer properties of the series of unbonded, amide-bonded, and alkylsulfobetaine-bonded ethylene bridged hybrid hydrophilic interaction liquid chromatography columns. Gritti F; Alden BA; McLaughlin J; Walter TH J Chromatogr A; 2023 Mar; 1692():463828. PubMed ID: 36804802 [TBL] [Abstract][Full Text] [Related]
7. [Hydrophilic interaction liquid chromatography for removal of pesticide residues in ginseng extracts]. Sun L; Liu J; Guo X; Wu L; Duan Z; Wang C; Wang L Se Pu; 2021 Apr; 39(4):444-452. PubMed ID: 34227766 [TBL] [Abstract][Full Text] [Related]
8. Comparison of existing strategies for keeping symmetrical peaks in on-line Hydrophilic Interaction Liquid Chromatography x Reversed-Phase Liquid Chromatography despite solvent strength mismatch. Chapel S; Rouvière F; Heinisch S J Chromatogr A; 2021 Apr; 1642():462001. PubMed ID: 33684873 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive analysis of the effective and intra-particle diffusion of weakly retained compounds in silica hydrophilic interaction liquid chromatography columns. Redón L; Subirats X; Chapel S; Januarius T; Broeckhoven K; Rosés M; Cabooter D; Desmet G J Chromatogr A; 2024 Jan; 1713():464529. PubMed ID: 38029660 [TBL] [Abstract][Full Text] [Related]
10. Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham's linear solvation energy relationships. Redón L; Safar Beiranvand M; Subirats X; Rosés M Anal Chim Acta; 2023 Oct; 1277():341672. PubMed ID: 37604624 [TBL] [Abstract][Full Text] [Related]
11. Assessment of intra-particle diffusion in hydrophilic interaction liquid chromatography and reversed-phase liquid chromatography under conditions of identical packing structure. Song H; Desmet G; Cabooter D J Chromatogr A; 2017 Nov; 1523():204-214. PubMed ID: 28689581 [TBL] [Abstract][Full Text] [Related]
12. Pulsed elution modulation for on-line comprehensive two-dimensional liquid chromatography coupling reversed phase liquid chromatography and hydrophilic interaction chromatography. Chen Y; Wu Y; Liu X; Li B; Hu D; Huang S; Ma M; Chen B J Chromatogr A; 2019 Jan; 1583():98-107. PubMed ID: 30477714 [TBL] [Abstract][Full Text] [Related]
13. Retention of stevioside polar compounds on a sulfonic acid-functionalized stationary phase. Li R; Sun W; Xiao X; Chen B; Wei Y J Chromatogr A; 2020 Jun; 1620():460978. PubMed ID: 32106966 [TBL] [Abstract][Full Text] [Related]
14. Insights from molecular simulations about dead time markers in reversed-phase liquid chromatography. Trebel N; Höltzel A; Steinhoff A; Tallarek U J Chromatogr A; 2021 Mar; 1640():461958. PubMed ID: 33582514 [TBL] [Abstract][Full Text] [Related]
15. [Prediction of Liu X; Gao W; Liang C; Qiao J; Wang K; Lian H Se Pu; 2021 Nov; 39(11):1230-1238. PubMed ID: 34677018 [TBL] [Abstract][Full Text] [Related]
16. Pushing the limits of resolving power and analysis time in on-line comprehensive hydrophilic interaction x reversed phase liquid chromatography for the analysis of complex peptide samples. Chapel S; Rouvière F; Heinisch S J Chromatogr A; 2020 Mar; 1615():460753. PubMed ID: 31810621 [TBL] [Abstract][Full Text] [Related]
17. Retention Study of Flavonoids Under Different Chromatographic Modes. Sentkowska A; Biesaga M; Pyrzynska K J Chromatogr Sci; 2016 Apr; 54(4):516-22. PubMed ID: 26668302 [TBL] [Abstract][Full Text] [Related]
18. Measurement of mobile-phase volume in reversed-phase liquid chromatography and evaluation of the composition of liquid layer formed by solvation of packing materials. Shibukawa M; Takazawa Y; Saitoh K Anal Chem; 2007 Aug; 79(16):6279-86. PubMed ID: 17630716 [TBL] [Abstract][Full Text] [Related]
19. Retention of arsenic species on zwitterionic stationary phase in hydrophilic interaction chromatography. Xie D; Mattusch J; Wennrich R J Sep Sci; 2010 Mar; 33(6-7):817-25. PubMed ID: 20222073 [TBL] [Abstract][Full Text] [Related]
20. Insight into the hydrophilic interaction liquid chromatographic retention behaviors of hydrophilic compounds on different stationary phases. Gao W; Liu XL; Wang Y; Liang C; Lian HZ; Qiao JQ Talanta; 2020 Nov; 219():121363. PubMed ID: 32887085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]