BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36771117)

  • 41. Features of promising technologies for pretreatment of lignocellulosic biomass.
    Mosier N; Wyman C; Dale B; Elander R; Lee YY; Holtzapple M; Ladisch M
    Bioresour Technol; 2005 Apr; 96(6):673-86. PubMed ID: 15588770
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Producing high sugar concentrations from loblolly pine using wet explosion pretreatment.
    Rana D; Rana V; Ahring BK
    Bioresour Technol; 2012 Oct; 121():61-7. PubMed ID: 22854131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lignin monomer in steam explosion assist chemical treated cotton stalk affects sugar release.
    Wang Y; Gong X; Hu X; Zhou N
    Bioresour Technol; 2019 Mar; 276():343-348. PubMed ID: 30641333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly-efficient pretreatment using alkaline enhanced aqueous deep eutectic solvent to unlock poplar for high yield of fermentable sugars: Synergistic removal of lignin and mannan.
    Li H; Li X; Li D; Zhang J; Nawaz H; You T; Xu F
    Bioresour Technol; 2022 May; 351():126993. PubMed ID: 35288268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization.
    Chu Q; Tong W; Chen J; Wu S; Jin Y; Hu J; Song K
    Biotechnol Biofuels; 2021 Jun; 14(1):136. PubMed ID: 34118969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pretreatment methods for bioethanol production.
    Xu Z; Huang F
    Appl Biochem Biotechnol; 2014 Sep; 174(1):43-62. PubMed ID: 24972651
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of lignin content on alkaline-sulfite pretreatment of Hybrid Pennisetum.
    Wang J; Hao X; Yang M; Qin Y; Jia L; Chu J; Zhang J
    Bioresour Technol; 2018 Nov; 267():793-796. PubMed ID: 30017365
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept.
    Ruiz HA; Conrad M; Sun SN; Sanchez A; Rocha GJM; Romaní A; Castro E; Torres A; Rodríguez-Jasso RM; Andrade LP; Smirnova I; Sun RC; Meyer AS
    Bioresour Technol; 2020 Mar; 299():122685. PubMed ID: 31918970
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Short-time deep eutectic solvents pretreatment enhanced production of fermentable sugars and tailored lignin nanoparticles from abaca.
    Ma CY; Peng XP; Sun S; Wen JL; Yuan TQ
    Int J Biol Macromol; 2021 Dec; 192():417-425. PubMed ID: 34582914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modified acid pretreatment to alter physicochemical properties of biomass for full cellulose/hemicellulose utilization.
    Tong W; Fang H; Song K; Xie X; Wang J; Jin Y; Wu S; Hu J; Chu Q
    Carbohydr Polym; 2023 Jan; 299():120182. PubMed ID: 36876797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Green methods of lignocellulose pretreatment for biorefinery development.
    Capolupo L; Faraco V
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9451-9467. PubMed ID: 27714444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.
    Kadam KL; Chin CY; Brown LW
    J Ind Microbiol Biotechnol; 2008 May; 35(5):331. PubMed ID: 18273654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass.
    Matsakas L; Nitsos C; Raghavendran V; Yakimenko O; Persson G; Olsson E; Rova U; Olsson L; Christakopoulos P
    Biotechnol Biofuels; 2018; 11():160. PubMed ID: 29930706
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.
    Zhu J; Shi L; Zhang L; Xu Y; Yong Q; Ouyang J; Yu S
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1619-26. PubMed ID: 27277746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New two-stage pretreatment for the fractionation of lignocellulosic components using hydrothermal pretreatment followed by imidazole delignification: Focus on the polysaccharide valorization.
    Toscan A; Fontana RC; Andreaus J; Camassola M; Lukasik RM; Dillon AJP
    Bioresour Technol; 2019 Aug; 285():121346. PubMed ID: 31004946
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement of enzymatic digestibility of Eucalyptus grandis pretreated by NaOH catalyzed steam explosion.
    Park JY; Kang M; Kim JS; Lee JP; Choi WI; Lee JS
    Bioresour Technol; 2012 Nov; 123():707-12. PubMed ID: 22939603
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Organosolv fractionation of spruce bark using ethanol-water mixtures: Towards a novel bio-refinery concept.
    Hrůzová K; Matsakas L; Rova U; Christakopoulos P
    Bioresour Technol; 2021 Dec; 341():125855. PubMed ID: 34523546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of Liquid Hot Water Pretreatment on Enzymatic Hydrolysis and Physicochemical Changes of Corncobs.
    Imman S; Laosiripojana N; Champreda V
    Appl Biochem Biotechnol; 2018 Feb; 184(2):432-443. PubMed ID: 28721652
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose.
    Gabhane J; William SP; Vaidya AN; Das S; Wate SR
    Waste Manag; 2015 Jun; 40():92-9. PubMed ID: 25816769
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pretreatment of forest residues of Douglas fir by wet explosion for enhanced enzymatic saccharification.
    Biswas R; Teller PJ; Ahring BK
    Bioresour Technol; 2015 Sep; 192():46-53. PubMed ID: 26011690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.