BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 36771408)

  • 1. The Impact of Phytochemicals in Obesity-Related Metabolic Diseases: Focus on Ceramide Metabolism.
    Kim E; Jeon S
    Nutrients; 2023 Jan; 15(3):. PubMed ID: 36771408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ceramides - Lipotoxic Inducers of Metabolic Disorders.
    Chaurasia B; Summers SA
    Trends Endocrinol Metab; 2015 Oct; 26(10):538-550. PubMed ID: 26412155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Lard Works in Mysterious Ways: Ceramides in Nutrition-Linked Chronic Disease.
    Nicholson RJ; Norris MK; Poss AM; Holland WL; Summers SA
    Annu Rev Nutr; 2022 Aug; 42():115-144. PubMed ID: 35584813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A ceramide-centric view of insulin resistance.
    Chavez JA; Summers SA
    Cell Metab; 2012 May; 15(5):585-94. PubMed ID: 22560211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of specific ceramides to obesity-associated metabolic diseases.
    Hammerschmidt P; Brüning JC
    Cell Mol Life Sci; 2022 Jul; 79(8):395. PubMed ID: 35789435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ceramides in Metabolism: Key Lipotoxic Players.
    Chaurasia B; Summers SA
    Annu Rev Physiol; 2021 Feb; 83():303-330. PubMed ID: 33158378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting sphingolipid metabolism in the treatment of obesity/type 2 diabetes.
    Bellini L; Campana M; Mahfouz R; Carlier A; Véret J; Magnan C; Hajduch E; Le Stunff H
    Expert Opin Ther Targets; 2015; 19(8):1037-50. PubMed ID: 25814122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells.
    Bandet CL; Tan-Chen S; Bourron O; Le Stunff H; Hajduch E
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30678043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans.
    Bergman BC; Brozinick JT; Strauss A; Bacon S; Kerege A; Bui HH; Sanders P; Siddall P; Kuo MS; Perreault L
    Am J Physiol Endocrinol Metab; 2015 Aug; 309(4):E398-408. PubMed ID: 26126684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance.
    Lipina C; Hundal HS
    Diabetologia; 2011 Jul; 54(7):1596-607. PubMed ID: 21468641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting ceramide metabolism in obesity.
    Aburasayn H; Al Batran R; Ussher JR
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E423-35. PubMed ID: 27382035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New role for ceramide in hypoxia and insulin resistance.
    Xia QS; Lu FE; Wu F; Huang ZY; Dong H; Xu LJ; Gong J
    World J Gastroenterol; 2020 May; 26(18):2177-2186. PubMed ID: 32476784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism.
    Holland WL; Summers SA
    Endocr Rev; 2008 Jun; 29(4):381-402. PubMed ID: 18451260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramide Acyl Chain Length and Its Relevance to Intracellular Lipid Regulation.
    Ho QWC; Zheng X; Ali Y
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fat-Secreted Ceramides Regulate Vascular Redox State and Influence Outcomes in Patients With Cardiovascular Disease.
    Akawi N; Checa A; Antonopoulos AS; Akoumianakis I; Daskalaki E; Kotanidis CP; Kondo H; Lee K; Yesilyurt D; Badi I; Polkinghorne M; Akbar N; Lundgren J; Chuaiphichai S; Choudhury R; Neubauer S; Channon KM; Torekov SS; Wheelock CE; Antoniades C
    J Am Coll Cardiol; 2021 May; 77(20):2494-2513. PubMed ID: 34016263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ceramides are necessary and sufficient for diet-induced impairment of thermogenic adipocytes.
    Chaurasia B; Ying L; Talbot CL; Maschek JA; Cox J; Schuchman EH; Hirabayashi Y; Holland WL; Summers SA
    Mol Metab; 2021 Mar; 45():101145. PubMed ID: 33352310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Isocaloric Fructose Restriction on Ceramide Levels in Children with Obesity and Cardiometabolic Risk: Relation to Hepatic De Novo Lipogenesis and Insulin Sensitivity.
    Olson E; Suh JH; Schwarz JM; Noworolski SM; Jones GM; Barber JR; Erkin-Cakmak A; Mulligan K; Lustig RH; Mietus-Snyder M
    Nutrients; 2022 Mar; 14(7):. PubMed ID: 35406045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipid content of human adipose tissue: relationship to adiponectin and insulin resistance.
    Blachnio-Zabielska AU; Koutsari C; Tchkonia T; Jensen MD
    Obesity (Silver Spring); 2012 Dec; 20(12):2341-7. PubMed ID: 22677645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes.
    Roszczyc-Owsiejczuk K; Zabielski P
    Front Endocrinol (Lausanne); 2021; 12():635175. PubMed ID: 33815291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic Cannabidiol Administration Attenuates Skeletal Muscle De Novo Ceramide Synthesis Pathway and Related Metabolic Effects in a Rat Model of High-Fat Diet-Induced Obesity.
    Bielawiec P; Harasim-Symbor E; Konstantynowicz-Nowicka K; Sztolsztener K; Chabowski A
    Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32859125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.