These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36771568)
1. Design and Development of a Low-Cost UGV 3D Phenotyping Platform with Integrated LiDAR and Electric Slide Rail. Cai S; Gou W; Wen W; Lu X; Fan J; Guo X Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771568 [TBL] [Abstract][Full Text] [Related]
2. Development of a Low-Cost System for 3D Orchard Mapping Integrating UGV and LiDAR. Murcia HF; Tilaguy S; Ouazaa S Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961275 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates. Madec S; Baret F; de Solan B; Thomas S; Dutartre D; Jezequel S; Hemmerlé M; Colombeau G; Comar A Front Plant Sci; 2017; 8():2002. PubMed ID: 29230229 [TBL] [Abstract][Full Text] [Related]
4. Dynamic detection of three-dimensional crop phenotypes based on a consumer-grade RGB-D camera. Song P; Li Z; Yang M; Shao Y; Pu Z; Yang W; Zhai R Front Plant Sci; 2023; 14():1097725. PubMed ID: 36778701 [TBL] [Abstract][Full Text] [Related]
5. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System. Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436 [TBL] [Abstract][Full Text] [Related]
6. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR. Sun S; Li C; Paterson AH; Jiang Y; Xu R; Robertson JS; Snider JL; Chee PW Front Plant Sci; 2018; 9():16. PubMed ID: 29403522 [TBL] [Abstract][Full Text] [Related]
7. Mobile LiDAR Scanning System Combined with Canopy Morphology Extracting Methods for Tree Crown Parameters Evaluation in Orchards. Wang K; Zhou J; Zhang W; Zhang B Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419182 [TBL] [Abstract][Full Text] [Related]
8. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping. Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808 [TBL] [Abstract][Full Text] [Related]
9. Automatic Branch-Leaf Segmentation and Leaf Phenotypic Parameter Estimation of Pear Trees Based on Three-Dimensional Point Clouds. Li H; Wu G; Tao S; Yin H; Qi K; Zhang S; Guo W; Ninomiya S; Mu Y Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177776 [TBL] [Abstract][Full Text] [Related]
10. LiDARPheno - A Low-Cost LiDAR-Based 3D Scanning System for Leaf Morphological Trait Extraction. Panjvani K; Dinh AV; Wahid KA Front Plant Sci; 2019; 10():147. PubMed ID: 30815008 [TBL] [Abstract][Full Text] [Related]
11. Extracting Diameter at Breast Height with a Handheld Mobile LiDAR System in an Outdoor Environment. Zhou S; Kang F; Li W; Kan J; Zheng Y; He G Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330918 [TBL] [Abstract][Full Text] [Related]
12. A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction. Wu S; Wen W; Gou W; Lu X; Zhang W; Zheng C; Xiang Z; Chen L; Guo X Front Plant Sci; 2022; 13():897746. PubMed ID: 36003825 [TBL] [Abstract][Full Text] [Related]
13. Multi-Source Data Fusion Improves Time-Series Phenotype Accuracy in Maize under a Field High-Throughput Phenotyping Platform. Li Y; Wen W; Fan J; Gou W; Gu S; Lu X; Yu Z; Wang X; Guo X Plant Phenomics; 2023; 5():0043. PubMed ID: 37223316 [TBL] [Abstract][Full Text] [Related]
14. An integrated method for phenotypic analysis of wheat based on multi-view image sequences: from seedling to grain filling stages. Sun S; Zhu Y; Liu S; Chen Y; Zhang Y; Li S Front Plant Sci; 2024; 15():1459968. PubMed ID: 39224846 [TBL] [Abstract][Full Text] [Related]
15. Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a "Phenomobile". Qiu Q; Sun N; Bai H; Wang N; Fan Z; Wang Y; Meng Z; Li B; Cong Y Front Plant Sci; 2019; 10():554. PubMed ID: 31134110 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based prediction of plant height and crown area of vegetable crops using LiDAR point cloud. J R; Nidamanuri RR Sci Rep; 2024 Jun; 14(1):14903. PubMed ID: 38942825 [TBL] [Abstract][Full Text] [Related]
17. A Low-Cost 3D Phenotype Measurement Method of Leafy Vegetables Using Video Recordings from Smartphones. Yang Z; Han Y Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113853 [TBL] [Abstract][Full Text] [Related]
18. Extraction of soybean plant trait parameters based on SfM-MVS algorithm combined with GRNN. He W; Ye Z; Li M; Yan Y; Lu W; Xing G Front Plant Sci; 2023; 14():1181322. PubMed ID: 37560031 [TBL] [Abstract][Full Text] [Related]
19. Crop Leaf Phenotypic Parameter Measurement Based on the RKM-D Point Cloud Method. Mu W; Li Y; Deng M; Han N; Guo X Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544260 [TBL] [Abstract][Full Text] [Related]
20. Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR. Sánchez M; Morales J; Martínez JL Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]