BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36771622)

  • 1. Metabolomics and Transcriptomics Provide Insights into Lipid Biosynthesis in the Embryos of Walnut (
    Liang M; Zhang X; Dong Q; Li H; Guo S; Luan H; Jia P; Yang M; Qi G
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome Analysis of Walnut (
    Huang R; Zhou Y; Zhang J; Ji F; Jin F; Fan W; Pei D
    J Agric Food Chem; 2021 Jan; 69(1):377-396. PubMed ID: 33373225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomics and Transcriptomics Analyses Reveals the Molecular Regulatory Mechanisms of Walnut (
    Liang M; Dong Q; Zhang X; Liu Y; Li H; Guo S; Luan H; Jia P; Yang M; Qi G
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome Analysis of Genes Involved in Fatty Acid and Lipid Biosynthesis in Developing Walnut (
    Shi W; Zhang D; Ma Z
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut (
    Zhao X; Yang G; Liu X; Yu Z; Peng S
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp.
    Ding J; Ruan C; Du W; Guan Y
    BMC Plant Biol; 2019 May; 19(1):207. PubMed ID: 31109294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolome and Transcriptome Profiling Unveil the Mechanisms of Polyphenol Synthesis in the Developing Endopleura of Walnut (
    Huang R; Zhou Y; Jin F; Zhang J; Ji F; Bai Y; Pei D
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis).
    Huang R; Huang Y; Sun Z; Huang J; Wang Z
    J Agric Food Chem; 2017 May; 65(20):4223-4236. PubMed ID: 28459558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of oil synthesis pathway in Cyperus esculentus tubers and identification of oleosin and caleosin genes.
    Zhu Y; Wang Y; Wei Z; Zhang X; Jiao B; Tian Y; Yan F; Li J; Liu Y; Yang X; Zhang J; Wang X; Mu Z; Wang Q
    J Plant Physiol; 2023 May; 284():153961. PubMed ID: 36933340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Grain oil quality formation and metabolism-related genes difference expression of
    Shi SY; Ding XN; Wang ZC; Guo XF; Zhang GN; Hu YH; Shi GA
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(11):2987-2996. PubMed ID: 36384833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp.
    Kilaru A; Cao X; Dabbs PB; Sung HJ; Rahman MM; Thrower N; Zynda G; Podicheti R; Ibarra-Laclette E; Herrera-Estrella L; Mockaitis K; Ohlrogge JB
    BMC Plant Biol; 2015 Aug; 15():203. PubMed ID: 26276496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic
    Abdullah HM; Chhikara S; Akbari P; Schnell DJ; Pareek A; Dhankher OP
    Biotechnol Biofuels; 2018; 11():335. PubMed ID: 30574188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic and Metabolic Analysis of Fruit Development and Identification of Genes Involved in Raffinose and Hydrolysable Tannin Biosynthesis in Walnuts.
    Wang H; Asker K; Zhan C; Wang N
    J Agric Food Chem; 2021 Jul; 69(28):8050-8062. PubMed ID: 34232042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptomic analysis of high- and low-oil
    Wu B; Ruan C; Han P; Ruan D; Xiong C; Ding J; Liu S
    3 Biotech; 2019 Jul; 9(7):257. PubMed ID: 31192082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical metabolic pathways and genes cooperate for epoxy fatty acid-enriched oil production in developing seeds of Vernonia galamensis, an industrial oleaginous plant.
    Sun Y; Liu B; Xue J; Wang X; Cui H; Li R; Jia X
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):21. PubMed ID: 35216635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis of walnut quality formation and color change mechanism of pellicle during walnut development.
    Zeng Y; Liu H; Chen S; Wang G; Chen J; Lu Z; Hou N; Ding G; Zhao P
    Gene Expr Patterns; 2022 Sep; 45():119260. PubMed ID: 35760355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis reveals a composite molecular map linked to unique seed oil profile of Neocinnamomum caudatum (Nees) Merr.
    Gan Y; Song Y; Chen Y; Liu H; Yang D; Xu Q; Zheng Z
    BMC Plant Biol; 2018 Nov; 18(1):303. PubMed ID: 30477425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and analysis of the FAD gene family in walnuts (Juglans regia L.) based on transcriptome data.
    Liu K; Zhao S; Wang S; Wang H; Zhang Z
    BMC Genomics; 2020 Apr; 21(1):299. PubMed ID: 32293267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated lipidomic and transcriptomic analysis reveals diacylglycerol accumulation in olive of Longnan (China).
    Hu W; Ma J; Zhang H; Miu X; Miao X; Deng Y
    PeerJ; 2023; 11():e15724. PubMed ID: 37583911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.