These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 36771662)
1. Weighted Gene Co-Expression Network Analysis to Explore Hub Genes of Resveratrol Biosynthesis in Exocarp and Mesocarp of 'Summer Black' Grape. Li C; Chen L; Fan Q; He P; Wang C; Huang H; Huang R; Tang J; Tadda SA; Qiu D; Qiu Z Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771662 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic and Weighted Gene Co-expression Correlation Network Analysis Reveal Resveratrol Biosynthesis Mechanisms Caused by Bud Sport in Grape Berry. Leng F; Ye Y; Zhou J; Jia H; Zhu X; Shi J; Zhang Z; Shen N; Wang L Front Plant Sci; 2021; 12():690095. PubMed ID: 34220913 [TBL] [Abstract][Full Text] [Related]
3. Localization of stilbene synthase in Vitis vinifera L. during berry development. Fornara V; Onelli E; Sparvoli F; Rossoni M; Aina R; Marino G; Citterio S Protoplasma; 2008; 233(1-2):83-93. PubMed ID: 18615235 [TBL] [Abstract][Full Text] [Related]
4. Impact of cluster thinning on transcriptional regulation of anthocyanin biosynthesis-related genes in 'Summer Black' grapes. Xi X; Zha Q; Jiang A; Tian Y Plant Physiol Biochem; 2016 Jul; 104():180-7. PubMed ID: 27035257 [TBL] [Abstract][Full Text] [Related]
5. Relative quantification of phenolic compounds in exocarp-mesocarp and endocarp of sumac (Toxicodendron vernicifluum) combined with transcriptome analysis provides insights into glycosylation of flavonoids and biflavonoid biosynthesis. Han F; Zhang Q; Ding R; Wang J; Wu H; Zhao A Plant Physiol Biochem; 2023 Feb; 195():275-287. PubMed ID: 36652849 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome sequencing and flavonoid metabolism analysis in the leaves of three different cultivars of Acer truncatum. Qiao Q; Si F; Wu C; Wang J; Zhang A; Tao J; Zhang L; Liu Y; Feng Z Plant Physiol Biochem; 2022 Jan; 171():1-13. PubMed ID: 34968987 [TBL] [Abstract][Full Text] [Related]
7. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
8. Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages. Leng F; Lin Q; Wu D; Wang S; Wang D; Sun C Molecules; 2016 Oct; 21(11):. PubMed ID: 27801843 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptomic analysis between 'Summer Black' and its bud sport 'Nantaihutezao' during developmental stages. Leng F; Ye Y; Zhu X; Zhang Y; Zhang Z; Shi J; Shen N; Jia H; Wang L Planta; 2021 Jan; 253(1):23. PubMed ID: 33403440 [TBL] [Abstract][Full Text] [Related]
10. Differential incorporation of 1-deoxy-D-xylulose into (3S)-linalool and geraniol in grape berry exocarp and mesocarp. Luan F; Wüst M Phytochemistry; 2002 Jul; 60(5):451-9. PubMed ID: 12052510 [TBL] [Abstract][Full Text] [Related]
11. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds. Wang W; Khalil-Ur-Rehman M; Feng J; Tao J J Plant Physiol; 2017 Nov; 218():155-166. PubMed ID: 28843071 [TBL] [Abstract][Full Text] [Related]
13. Histochemical and immunohistochemical analysis of enzymes involved in phenolic metabolism during berry development in Vitis vinifera L. Molero de Ávila ME; Alarcón MV; Uriarte D; Mancha LA; Moreno D; Francisco-Morcillo J Protoplasma; 2019 Jan; 256(1):25-38. PubMed ID: 29926200 [TBL] [Abstract][Full Text] [Related]
14. Individual and combined effects of CaCl₂ and UV-C on the biosynthesis of resveratrols in grape leaves and berry skins. Wang L; Ma L; Xi H; Duan W; Wang J; Li S J Agric Food Chem; 2013 Jul; 61(29):7135-41. PubMed ID: 23855433 [TBL] [Abstract][Full Text] [Related]
15. Insights into the Mechanisms Underlying Ultraviolet-C Induced Resveratrol Metabolism in Grapevine (V. amurensis Rupr.) cv. "Tonghua-3". Yin X; Singer SD; Qiao H; Liu Y; Jiao C; Wang H; Li Z; Fei Z; Wang Y; Fan C; Wang X Front Plant Sci; 2016; 7():503. PubMed ID: 27148326 [TBL] [Abstract][Full Text] [Related]
16. Co-expression modules construction by WGCNA and identify potential hub genes and regulation pathways of postpartum depression. Deng Z; Cai W; Liu J; Deng A; Yang Y; Tu J; Yuan C; Xiao H; Gao W Front Biosci (Landmark Ed); 2021 Nov; 26(11):1019-1030. PubMed ID: 34856750 [No Abstract] [Full Text] [Related]
17. Transcriptome Analysis Reveals the Genetic Basis of the Resveratrol Biosynthesis Pathway in an Endophytic Fungus (Alternaria sp. MG1) Isolated from Vitis vinifera. Che J; Shi J; Gao Z; Zhang Y Front Microbiol; 2016; 7():1257. PubMed ID: 27588016 [TBL] [Abstract][Full Text] [Related]
18. Full-length transcriptome sequencing provides insights into flavonoid biosynthesis in Camellia nitidissima Petals. Liu H; Liu Q; Chen Y; Zhu Y; Zhou X; Li B Gene; 2023 Jan; 850():146924. PubMed ID: 36191826 [TBL] [Abstract][Full Text] [Related]
19. Pigmentation in sand pear (Pyrus pyrifolia) fruit: biochemical characterization, gene discovery and expression analysis with exocarp pigmentation mutant. Wang YZ; Zhang S; Dai MS; Shi ZB Plant Mol Biol; 2014 May; 85(1-2):123-34. PubMed ID: 24445590 [TBL] [Abstract][Full Text] [Related]
20. Identification of 10 Hub genes related to the progression of colorectal cancer by co-expression analysis. Meng J; Su R; Liao Y; Li Y; Li L PeerJ; 2020; 8():e9633. PubMed ID: 33240582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]