BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36771722)

  • 1. Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS) in
    Tang Y; Zhang G; Jiang X; Shen S; Guan M; Tang Y; Sun F; Hu R; Chen S; Zhao H; Li J; Lu K; Yin N; Qu C
    Plants (Basel); 2023 Feb; 12(3):. PubMed ID: 36771722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus).
    Hasan M; Friedt W; Pons-Kühnemann J; Freitag NM; Link K; Snowdon RJ
    Theor Appl Genet; 2008 May; 116(8):1035-49. PubMed ID: 18322671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.
    Yi GE; Robin AH; Yang K; Park JI; Kang JG; Yang TJ; Nou IS
    Molecules; 2015 Jul; 20(7):13089-111. PubMed ID: 26205053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes.
    Jhingan S; Harloff HJ; Abbadi A; Welsch C; Blümel M; Tasdemir D; Jung C
    Sci Rep; 2023 Feb; 13(1):2344. PubMed ID: 36759657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation of glucosinolates in vegetable crops of Brassica rapa.
    Padilla G; Cartea ME; Velasco P; de Haro A; Ordás A
    Phytochemistry; 2007 Feb; 68(4):536-45. PubMed ID: 17187832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study.
    Liu S; Huang H; Yi X; Zhang Y; Yang Q; Zhang C; Fan C; Zhou Y
    Plant Biotechnol J; 2020 Jun; 18(6):1472-1484. PubMed ID: 31820843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation of glucosinolates on position orders of flower buds in turnip rape (
    Arasu MV; Kim NH; Antonisamy P; Yoon YH; Kim SJ
    Saudi J Biol Sci; 2017 Nov; 24(7):1562-1566. PubMed ID: 30174493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumorous Stem Development of
    Li M; Xie F; Li J; Sun B; Luo Y; Zhang Y; Chen Q; Wang Y; Zhang F; Zhang Y; Lin Y; Wang X; Tang H
    Plants (Basel); 2020 Aug; 9(8):. PubMed ID: 32784853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L.
    Qu CM; Li SM; Duan XJ; Fan JH; Jia LD; Zhao HY; Lu K; Li JN; Xu XF; Wang R
    Genes (Basel); 2015 Nov; 6(4):1215-29. PubMed ID: 26593950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds.
    Niu Y; Rogiewicz A; Wan C; Guo M; Huang F; Slominski BA
    J Agric Food Chem; 2015 Apr; 63(12):3078-84. PubMed ID: 25765856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of loci affecting seed glucosinolate contents in Brassica napus L.
    Wei D; Cui Y; Mei J; Qian L; Lu K; Wang ZM; Li J; Tang Q; Qian W
    J Integr Plant Biol; 2019 May; 61(5):611-623. PubMed ID: 30183130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of roasting on the thermal degradation pathway in the glucosinolates of fragrant rapeseed oil: Implications to flavour profiles.
    Zhang L; Chen J; Zhao X; Wang Y; Yu X
    Food Chem X; 2022 Dec; 16():100503. PubMed ID: 36519104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content.
    Robin AH; Yi GE; Laila R; Yang K; Park JI; Kim HR; Nou IS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building comprehensive glucosinolate profiles for brassica varieties.
    Mocniak LE; Elkin KR; Dillard SL; Bryant RB; Soder KJ
    Talanta; 2023 Jan; 251():123814. PubMed ID: 35961082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted Metabolic and In-Silico Analyses Highlight Distinct Glucosinolates and Phenolics Signatures in Korean Rapeseed Cultivars.
    Kim J; Sohn SI; Sathasivam R; Khaskheli AJ; Kim MC; Kim NS; Park SU
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucosinolate Diversity Analysis in Choy Sum (
    Kim SH; Subramanian P; Hahn BS
    Foods; 2023 Jun; 12(12):. PubMed ID: 37372611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head (
    Bhandari SR; Rhee J; Choi CS; Jo JS; Shin YK; Lee JG
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further insight into decreases in seed glucosinolate content based on QTL mapping and RNA-seq in Brassica napus L.
    Chao H; Li H; Yan S; Zhao W; Chen K; Wang H; Raboanatahiry N; Huang J; Li M
    Theor Appl Genet; 2022 Sep; 135(9):2969-2991. PubMed ID: 35841418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic architecture of glucosinolate variation in Brassica napus.
    Kittipol V; He Z; Wang L; Doheny-Adams T; Langer S; Bancroft I
    J Plant Physiol; 2019 Sep; 240():152988. PubMed ID: 31255878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms.
    Brown AF; Yousef GG; Reid RW; Chebrolu KK; Thomas A; Krueger C; Jeffery E; Jackson E; Juvik JA
    Theor Appl Genet; 2015 Jul; 128(7):1431-47. PubMed ID: 25930056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.