These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36771781)

  • 1. Review of Bacterial Nanocellulose as Suitable Substrate for Conformable and Flexible Organic Light-Emitting Diodes.
    Faraco TA; Fontes ML; Paschoalin RT; Claro AM; Gonçalves IS; Cavicchioli M; Farias RL; Cremona M; Ribeiro SJL; Barud HDS; Legnani C
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperbranched Polymers for Organic Semiconductors.
    Zhou Z; Luo N; Shao X; Zhang HL; Liu Z
    Chempluschem; 2023 Jul; 88(7):e202300261. PubMed ID: 37377071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics.
    Nawaz A; Merces L; Ferro LMM; Sonar P; Bufon CCB
    Adv Mater; 2023 Mar; 35(11):e2204804. PubMed ID: 36124375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Electronics Based on Stretchable Organic Semiconductors.
    Xu X; Zhao Y; Liu Y
    Small; 2023 May; 19(20):e2206309. PubMed ID: 36794301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunities for bacterial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges.
    Samyn P; Meftahi A; Geravand SA; Heravi MEM; Najarzadeh H; Sabery MSK; Barhoum A
    Int J Biol Macromol; 2023 Mar; 231():123316. PubMed ID: 36682647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.
    Liu Y; Duzhko VV; Page ZA; Emrick T; Russell TP
    Acc Chem Res; 2016 Nov; 49(11):2478-2488. PubMed ID: 27783502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics.
    Sekine C; Tsubata Y; Yamada T; Kitano M; Doi S
    Sci Technol Adv Mater; 2014 Jun; 15(3):034203. PubMed ID: 27877671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transporting semiconducting polymers in organic electronics.
    Zhao X; Zhan X
    Chem Soc Rev; 2011 Jul; 40(7):3728-43. PubMed ID: 21409196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.
    Zhang C; Chen P; Hu W
    Small; 2016 Mar; 12(10):1252-94. PubMed ID: 26833896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic Light-Emitting Field-Effect Transistors: Device Geometries and Fabrication Techniques.
    Liu CF; Liu X; Lai WY; Huang W
    Adv Mater; 2018 Dec; 30(52):e1802466. PubMed ID: 30101548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Lived Flexible Displays Employing Efficient and Stable Inverted Organic Light-Emitting Diodes.
    Fukagawa H; Sasaki T; Tsuzuki T; Nakajima Y; Takei T; Motomura G; Hasegawa M; Morii K; Shimizu T
    Adv Mater; 2018 Jul; 30(28):e1706768. PubMed ID: 29808489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Submicron-Thickness Ultraflexible Organic Light-Emitting Diodes via a Photoregulated Stripping Strategy.
    Xue C; He N; Zhao X; Ni Y; Wang B; Tong Y; Tang Q; Liu Y
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14015-14025. PubMed ID: 38446708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769.
    Jacek P; Ryngajłło M; Bielecki S
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5339-5353. PubMed ID: 31037382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesive lithography for fabricating organic electronic and optoelectronics devices.
    Wang Z; Xing R; Yu X; Han Y
    Nanoscale; 2011 Jul; 3(7):2663-78. PubMed ID: 21698322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Transparent, Highly Thermally Stable Nanocellulose/Polymer Hybrid Substrates for Flexible OLED Devices.
    Tao J; Wang R; Yu H; Chen L; Fang D; Tian Y; Xie J; Jia D; Liu H; Wang J; Tang F; Song L; Li H
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9701-9709. PubMed ID: 32013388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases.
    Moniri M; Boroumand Moghaddam A; Azizi S; Abdul Rahim R; Zuhainis SW; Navaderi M; Mohamad R
    Int J Nanomedicine; 2018; 13():5097-5112. PubMed ID: 30254435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications.
    Liu H; Liu D; Yang J; Gao H; Wu Y
    Small; 2023 Mar; 19(11):e2206938. PubMed ID: 36642796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quinoxaline derivatives as attractive electron-transporting materials.
    Abid Z; Ali L; Gulzar S; Wahad F; Ashraf RS; Nielsen CB
    Beilstein J Org Chem; 2023; 19():1694-1712. PubMed ID: 38025084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties.
    Stanisławska A; Staroszczyk H; Szkodo M
    Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.