BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 36771888)

  • 1. Accelerating Payload Release from Complex Coacervates through Mechanical Stimulation.
    Hatem WA; Lapitsky Y
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs.
    Wang J; Abbas M; Huang Y; Wang J; Li Y
    Commun Chem; 2023 Nov; 6(1):243. PubMed ID: 37935871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Transformation from Membrane-less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Appelhans D; Zhou Y; Zhang K; Moreno S; Temme A; Voit B
    Angew Chem Int Ed Engl; 2024 Jun; ():e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Coacervate Embolic Agent for Tumor Chemoembolization.
    Liu M; Sun Y; Zhou Y; Chen Y; Yu M; Li L; Yan L; Yuan Y; Chen J; Zhou K; Shan H; Peng X
    Adv Healthc Mater; 2024 Apr; ():e2304488. PubMed ID: 38588047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming the Stability, Encapsulation, and Sustained Release Properties of Calcium Alginate Beads through Gel-Confined Coacervation.
    Egbeyemi OI; Hatem WA; Kober UA; Lapitsky Y
    Langmuir; 2024 Jun; 40(23):11947-11958. PubMed ID: 38807458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the underwater adhesiveness of antibacterial polysaccharides complex coacervates.
    Galland P; Iqbal MH; Favier D; Legros M; Schaaf P; Boulmedais F; Vahdati M
    J Colloid Interface Sci; 2024 May; 661():196-206. PubMed ID: 38301458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coacervate or precipitate? Formation of non-equilibrium microstructures in coacervate emulsions.
    Edwards CER; Lakkis KL; Luo Y; Helgeson ME
    Soft Matter; 2023 Nov; 19(45):8849-8862. PubMed ID: 37947798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model.
    Tsanai M; Frederix PWJM; Schroer CFE; Souza PCT; Marrink SJ
    Chem Sci; 2021 May; 12(24):8521-8530. PubMed ID: 34221333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte Complex Coacervate Assembly with Cellulose Nanofibers.
    Khan N; Zaragoza NZ; Travis CE; Goswami M; Brettmann BK
    ACS Omega; 2020 Jul; 5(28):17129-17140. PubMed ID: 32715198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior.
    Liu W; Deng J; Song S; Sethi S; Walther A
    Commun Chem; 2024 May; 7(1):100. PubMed ID: 38693272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactoferrin-chia seed mucilage complex coacervates for intestinal delivery of quercetin and fortification of set yogurt.
    Shishir MRI; Suo H; Taip FS; Cheng KW
    Food Chem; 2024 May; 456():139818. PubMed ID: 38878531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative turbidimetric characterization of stabilized complex coacervate dispersions.
    Holkar A; Gao S; Villaseñor K; Lake M; Srivastava S
    Soft Matter; 2024 May; ():. PubMed ID: 38743276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonspherical Coacervate Shapes in an Enzyme-Driven Active System.
    Spoelstra WK; van der Sluis EO; Dogterom M; Reese L
    Langmuir; 2020 Mar; 36(8):1956-1964. PubMed ID: 31995710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Viscous, Dilute Phase Adhesive from Dense Polyphenolic Coacervates of Poly(vinyl alcohol) and Tannic acid.
    Ju HH; Kim E; Yang HY; Nam YR; Wu J; Lee H
    ACS Omega; 2024 Jan; 9(2):2953-2961. PubMed ID: 38250346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Polyelectrolyte Charge Density on the Linear Viscoelastic Behavior and Processing of Complex Coacervate Adhesives.
    van Westerveld L; Pelras T; Hofman AH; Loos K; Kamperman M; Es Sayed J
    Macromolecules; 2024 Jan; 57(2):652-663. PubMed ID: 38283122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoproteolysis of Oligopeptide-Based Coacervates for Enzymatic Modeling.
    Jin Z; Ling C; Yim W; Chang YC; He T; Li K; Zhou J; Cheng Y; Li Y; Yeung J; Wang R; Fajtová P; Amer L; Mattoussi H; O'Donoghue AJ; Jokerst JV
    ACS Nano; 2023 Sep; 17(17):16980-16992. PubMed ID: 37579082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On Complex Coacervate Core Micelles: Structure-Function Perspectives.
    Magana JR; Sproncken CCM; Voets IK
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32872312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequestration within peptide coacervates improves the fluorescence intensity, kinetics, and limits of detection of dye-based DNA biosensors.
    Green CM; Sementa D; Mathur D; Melinger JS; Deshpande P; Elbaum-Garfinkle S; Medintz IL; Ulijn RV; Díaz SA
    Commun Chem; 2024 Feb; 7(1):49. PubMed ID: 38424154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the Spatial Distribution of Amphiphilic Molecule within Complex Coacervate Microdroplet via Modulating Charge Strength of Polyelectrolytes.
    Yin C; Yu X; Chen C; Jin X; Tian L
    Small Methods; 2024 May; ():e2301760. PubMed ID: 38725320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trehalose-based coacervates for local bioactive protein delivery to the central nervous system.
    Hassan LF; Sen R; O'Shea TM
    Biomaterials; 2024 Sep; 309():122594. PubMed ID: 38701641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.