These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36771987)

  • 1. Optimization and Kinetic Evaluation for Glycolytic Depolymerization of Post-Consumer PET Waste with Sodium Methoxide.
    Javed S; Fisse J; Vogt D
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology.
    Kim Y; Kim M; Hwang J; Im E; Moon GD
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel efficient enzymatic synthesis of the key-reaction intermediate of PET depolymerization, mono(2-hydroxyethyl terephthalate) - MHET.
    Eugenio EQ; Campisano ISP; Dias AG; Castro AM; Coelho MAZ; Langone MAP
    J Biotechnol; 2022 Nov; 358():102-110. PubMed ID: 36063976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst.
    Laldinpuii Z; Lalhmangaihzuala S; Pachuau Z; Vanlaldinpuia K
    Waste Manag; 2021 May; 126():1-10. PubMed ID: 33730654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical methanol for polyethylene terephthalate depolymerization: observation using simulator.
    Genta M; Iwaya T; Sasaki M; Goto M
    Waste Manag; 2007; 27(9):1167-77. PubMed ID: 16914302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using
    Moyses DN; Teixeira DA; Waldow VA; Freire DMG; Castro AM
    3 Biotech; 2021 Oct; 11(10):435. PubMed ID: 34603913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured micro particles as a low-cost and sustainable catalyst in the recycling of PET fiber waste by the glycolysis method.
    Guo Z; Adolfsson E; Tam PL
    Waste Manag; 2021 May; 126():559-566. PubMed ID: 33862509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts.
    Bohre A; Jadhao PR; Tripathi K; Pant KK; Likozar B; Saha B
    ChemSusChem; 2023 Jul; 16(14):e202300142. PubMed ID: 36972065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic post-consumer poly(ethylene terephthalate) (PET) depolymerization using commercial enzymes.
    Brackmann R; de Oliveira Veloso C; de Castro AM; Langone MAP
    3 Biotech; 2023 May; 13(5):135. PubMed ID: 37124991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical scavenging of post-consumed clothes.
    Barot AA; Sinha VK
    Waste Manag; 2015 Dec; 46():86-93. PubMed ID: 26383902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decolorization and reusing of PET depolymerization waste liquid by electrochemical method with magnetic nanoelectrodes.
    Li M; Li Y; Lu J; Li X; Lu Y
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34531-34539. PubMed ID: 30311119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubilization and Upgrading of High Polyethylene Terephthalate Loadings in a Low-Costing Bifunctional Ionic Liquid.
    Sun J; Liu D; Young RP; Cruz AG; Isern NG; Schuerg T; Cort JR; Simmons BA; Singh S
    ChemSusChem; 2018 Feb; 11(4):781-792. PubMed ID: 29178551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of waste PET into useful textile auxiliaries.
    Shukla SR; Harad AM; Jawale LS
    Waste Manag; 2008; 28(1):51-6. PubMed ID: 17207616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts.
    Shirazimoghaddam S; Amin I; Faria Albanese JA; Shiju NR
    ACS Eng Au; 2023 Feb; 3(1):37-44. PubMed ID: 36820227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Simultaneous and Selective Depolymerization of Heterogeneous Streams of Polyethylene Terephthalate and Polycarbonate: Towards Industrially Feasible Chemical Recycling.
    Rubio Arias JJ; Barnard E; Thielemans W
    ChemSusChem; 2022 Aug; 15(15):e202200625. PubMed ID: 35699250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progressing Ultragreen, Energy-Efficient Biobased Depolymerization of Poly(ethylene terephthalate) via Microwave-Assisted Green Deep Eutectic Solvent and Enzymatic Treatment.
    Attallah OA; Azeem M; Nikolaivits E; Topakas E; Fournet MB
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dihydroxyterephthalate-A Trojan Horse PET Counit for Facile Chemical Recycling.
    Lee TH; Forrester M; Wang TP; Shen L; Liu H; Dileep D; Kuehl B; Li W; Kraus G; Cochran E
    Adv Mater; 2023 May; 35(21):e2210154. PubMed ID: 36857624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Efficiency for the Production of Bis-(2-Hydroxyethyl) Terephtalate (BHET) from the Glycolysis Reaction of Poly(Ethylene Terephtalate) (PET) in a Pressure Reactor.
    Mendiburu-Valor E; Mondragon G; González N; Kortaberria G; Eceiza A; Peña-Rodriguez C
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33946538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Depolymerization of Glass Fiber Reinforced PET Composites.
    Rubio Arias JJ; Thielemans W
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-oxide-doped silica nanoparticles for the catalytic glycolysis of polyethylene terephthalate.
    Imran M; Lee KG; Imtiaz Q; Kim BK; Han M; Cho BG; Kim DH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):824-8. PubMed ID: 21446554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.