These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36772078)

  • 1. Detection of Limbal Stem Cells Adhered to Melt Electrospun Silk Fibroin and Gelatin-Modified Polylactic Acid Scaffolds.
    Zdraveva E; Bendelja K; Bočkor L; Dolenec T; Mijović B
    Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and Characterization of Silk Fibroin-Based Nanofibrous Scaffolds Supplemented with Gelatin for Corneal Tissue Engineering.
    Sahi AK; Varshney N; Poddar S; Gundu S; Mahto SK
    Cells Tissues Organs; 2021; 210(3):173-194. PubMed ID: 34252899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering.
    Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F
    J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model.
    Li Y; Yang Y; Yang L; Zeng Y; Gao X; Xu H
    Stem Cell Res Ther; 2017 Nov; 8(1):256. PubMed ID: 29116027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold.
    Wang S; Zhang Y; Wang H; Yin G; Dong Z
    Biomacromolecules; 2009 Aug; 10(8):2240-4. PubMed ID: 19722559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets.
    Higa K; Takeshima N; Moro F; Kawakita T; Kawashima M; Demura M; Shimazaki J; Asakura T; Tsubota K; Shimmura S
    J Biomater Sci Polym Ed; 2011; 22(17):2261-76. PubMed ID: 21092419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of human Mesenchymal Stem Cells biocompatibility data growth on gelatin and silk fibroin scaffolds.
    Vanawati N; Barlian A; Tabata Y; Judawisastra H; Wibowo I
    Data Brief; 2019 Dec; 27():104678. PubMed ID: 31871963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells.
    Tominac Trcin M; Zdraveva E; Dolenec T; Vrgoč Zimić I; Bujić Mihica M; Batarilo I; Dekaris I; Blažević V; Slivac I; Holjevac Grgurić T; Bajsić EG; Markov K; Čanak I; Kuzmić S; Tarbuk A; Tomljenović A; Mrkonjić N; Mijović B
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32781567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-fabrication of stem-cell-incorporated corneal epithelial and stromal equivalents from silk fibroin and gelatin-based biomaterial for canine corneal regeneration.
    Torsahakul C; Israsena N; Khramchantuk S; Ratanavaraporn J; Dhitavat S; Rodprasert W; Nantavisai S; Sawangmake C
    PLoS One; 2022; 17(2):e0263141. PubMed ID: 35120168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application potential of three-dimensional silk fibroin scaffold using mesenchymal stem cells for cardiac regeneration.
    Cetin Y; Sahin MG; Kok FN
    J Biomater Appl; 2021 Oct; 36(4):740-753. PubMed ID: 34039082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Transplantation of human limbal cells cultivated on amniotic membrane for reconstruction of rat corneal epithelium after alkali burn].
    Yang W; Gu GZ; Song E; Cui ZH; Dong Y; Sui DM; Ma YL
    Zhonghua Yan Ke Za Zhi; 2007 Feb; 43(2):134-41. PubMed ID: 17459244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer.
    Yoon YI; Park KE; Lee SJ; Park WH
    Biomed Res Int; 2013; 2013():309048. PubMed ID: 24381937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun Poly(lactic acid) and Silk Fibroin Based Nanofibrous Scaffold for Meniscus Tissue Engineering.
    Promnil S; Ruksakulpiwat C; Numpaisal PO; Ruksakulpiwat Y
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications.
    Asadpour S; Kargozar S; Moradi L; Ai A; Nosrati H; Ai J
    Int J Biol Macromol; 2020 Jul; 154():1285-1294. PubMed ID: 31733251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Study of 3D Printing-Assisted Electrospinning Technology in Producing Tissue Regeneration Polymer-Fibroin Scaffold for Ureter Repair.
    Hu HY; Wu CL; Huang CS; Bai MY; Yu DS
    Turk J Urol; 2022 Mar; 48(2):118-129. PubMed ID: 35420054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limbal stem cell transplantation: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2008; 8(7):1-58. PubMed ID: 23074512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering.
    Yan C; Ren Y; Sun X; Jin L; Liu X; Chen H; Wang K; Yu M; Zhao Y
    J Photochem Photobiol B; 2020 Jan; 202():111680. PubMed ID: 31810038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration.
    Biazar E; Baradaran-Rafii A; Heidari-keshel S; Tavakolifard S
    J Biomater Sci Polym Ed; 2015; 26(16):1139-51. PubMed ID: 26324020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction.
    Holan V; Trosan P; Cejka C; Javorkova E; Zajicova A; Hermankova B; Chudickova M; Cejkova J
    Stem Cells Transl Med; 2015 Sep; 4(9):1052-63. PubMed ID: 26185258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.