BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36772091)

  • 1. Design of Ultra-Wideband Phased Array Applicator for Breast Cancer Hyperthermia Therapy.
    Lyu C; Li W; Li S; Mao Y; Yang B
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of Phased Antenna Array Applied in Focused Microwave Breast Hyperthermia.
    Wang X; Xi Z; Ye K; Gong Z; Chen Y; Wang X
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer.
    Kaur K; Kaur A
    Electromagn Biol Med; 2023 Oct; 42(4):163-181. PubMed ID: 38156657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and Connected Array.
    Yildiz G; Farhat I; Farrugia L; Bonello J; Zarb-Adami K; Sammut CV; Yilmaz T; Akduman I
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An RF phased array applicator designed for hyperthermia breast cancer treatments.
    Wu L; McGough RJ; Arabe OA; Samulski TV
    Phys Med Biol; 2006 Jan; 51(1):1-20. PubMed ID: 16357427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Evolution Optimization of Microwave Focused Hyperthermia Phased Array Excitation for Targeted Breast Cancer Heating.
    Lyu C; Li W; Yang B
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and characterisation of a phased antenna array for intact breast hyperthermia.
    Curto S; Garcia-Miquel A; Suh M; Vidal N; Lopez-Villegas JM; Prakash P
    Int J Hyperthermia; 2018 May; 34(3):250-260. PubMed ID: 28605946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Silico Study on Tumor-Size-Dependent Thermal Profiles inside an Anthropomorphic Female Breast Phantom Subjected to Multi-Dipole Antenna Array.
    Gas P; Miaskowski A; Subramanian M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Site-Specific Microwave Phased Array Hyperthermia Applicators Using 434 MHz Reduced Cavity-Backed Patch Antenna.
    Baskaran D; Arunachalam K
    Bioelectromagnetics; 2020 Dec; 41(8):630-648. PubMed ID: 32956531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization.
    Nguyen PT; Abbosh A; Crozier S
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1335-1344. PubMed ID: 28113219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient focusing of microwave hyperthermia for small deep-seated breast tumors treatment using particle swarm optimization.
    Elkayal HA; Ismail NE
    Comput Methods Biomech Biomed Engin; 2021 Jul; 24(9):985-994. PubMed ID: 34132607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact self-grounded Bow-Tie antenna design for an UWB phased-array hyperthermia applicator.
    Takook P; Persson M; Gellermann J; Trefná HD
    Int J Hyperthermia; 2017 Jun; 33(4):387-400. PubMed ID: 28064557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayered metamaterials array antenna based on artificial magnetic conductor's structure for the application diagnostic breast cancer detection with microwave imaging.
    Zerrad FE; Taouzari M; Makroum EM; El Aoufi J; Islam MT; Özkaner V; Abdulkarim YI; Karaaslan M
    Med Eng Phys; 2022 Jan; 99():103737. PubMed ID: 35058030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamaterial lens applicator for microwave hyperthermia of breast cancer.
    Wang G; Gong Y
    Int J Hyperthermia; 2009; 25(6):434-45. PubMed ID: 19925323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models.
    Bakker JF; Paulides MM; Obdeijn IM; van Rhoon GC; van Dongen KW
    Phys Med Biol; 2009 May; 54(10):3201-15. PubMed ID: 19420416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radio-frequency phased-array hyperthermia.
    Fenn AJ; King GA
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):273-80. PubMed ID: 8682539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive microwave hyperthermia for bone cancer treatment using realistic bone models and flexible antenna arrays.
    Geyikoglu MD; Cavusoglu B
    Electromagn Biol Med; 2021 Jul; 40(3):353-360. PubMed ID: 34380339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstrip-Fed 3D-Printed H-Sectorial Horn Phased Array.
    Zhou I; Pradell L; Villegas JM; Vidal N; Albert M; Jofre L; Romeu J
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic Performances Analysis of an Ultra-wideband and Flexible Material Antenna in Microwave Breast Imaging: To Implement A Wearable Medical Bra.
    Rahman A; Islam MT; Singh MJ; Kibria S; Akhtaruzzaman M
    Sci Rep; 2016 Dec; 6():38906. PubMed ID: 28008923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Efficient and Ultra Wide Band Monopole Antenna for Microwave Imaging and Communication Applications.
    Ullah S; Ruan C; Sadiq MS; Haq TU; He W
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.