These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 36772118)
1. Suitability Analysis of Machine Learning Algorithms for Crack Growth Prediction Based on Dynamic Response Data. Omar I; Khan M; Starr A Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772118 [TBL] [Abstract][Full Text] [Related]
2. A Machine Learning Approach to Model Interdependencies between Dynamic Response and Crack Propagation. Fleet T; Kamei K; He F; Khan MA; Khan KA; Starr A Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266048 [TBL] [Abstract][Full Text] [Related]
3. Automated Prediction of Crack Propagation Using H2O AutoML. Omar I; Khan M; Starr A; Abou Rok Ba K Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896512 [TBL] [Abstract][Full Text] [Related]
4. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
5. Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain. Tighe PJ; Harle CA; Hurley RW; Aytug H; Boezaart AP; Fillingim RB Pain Med; 2015 Jul; 16(7):1386-401. PubMed ID: 26031220 [TBL] [Abstract][Full Text] [Related]
6. Seasonal prediction of daily PM Wu Y; Lin S; Shi K; Ye Z; Fang Y Environ Sci Pollut Res Int; 2022 Jun; 29(30):45821-45836. PubMed ID: 35150424 [TBL] [Abstract][Full Text] [Related]
7. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation. Wang H; Zhang W; Sun F; Zhang W Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772906 [TBL] [Abstract][Full Text] [Related]
8. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
9. Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database. Miller PE; Pawar S; Vaccaro B; McCullough M; Rao P; Ghosh R; Warier P; Desai NR; Ahmad T J Card Fail; 2019 Jun; 25(6):479-483. PubMed ID: 30738152 [TBL] [Abstract][Full Text] [Related]
10. Active learning for prediction of tensile properties for material extrusion additive manufacturing. Nasrin T; Pourali M; Pourkamali-Anaraki F; Peterson AM Sci Rep; 2023 Jul; 13(1):11460. PubMed ID: 37454171 [TBL] [Abstract][Full Text] [Related]
11. Foundations of Machine Learning-Based Clinical Prediction Modeling: Part V-A Practical Approach to Regression Problems. Staartjes VE; Kernbach JM Acta Neurochir Suppl; 2022; 134():43-50. PubMed ID: 34862526 [TBL] [Abstract][Full Text] [Related]
13. Predicting cow milk quality traits from routinely available milk spectra using statistical machine learning methods. Frizzarin M; Gormley IC; Berry DP; Murphy TB; Casa A; Lynch A; McParland S J Dairy Sci; 2021 Jul; 104(7):7438-7447. PubMed ID: 33865578 [TBL] [Abstract][Full Text] [Related]
14. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques. Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881 [TBL] [Abstract][Full Text] [Related]
15. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study. Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Early Treatment Response to Initial Conventional Transarterial Chemoembolization Therapy for Hepatocellular Carcinoma by Machine-Learning Model Based on Computed Tomography. Dong Z; Lin Y; Lin F; Luo X; Lin Z; Zhang Y; Li L; Li ZP; Feng ST; Cai H; Peng Z J Hepatocell Carcinoma; 2021; 8():1473-1484. PubMed ID: 34877267 [TBL] [Abstract][Full Text] [Related]
17. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry? El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760 [TBL] [Abstract][Full Text] [Related]
18. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Cui Z; Gong G Neuroimage; 2018 Sep; 178():622-637. PubMed ID: 29870817 [TBL] [Abstract][Full Text] [Related]
19. A literature review of machine learning algorithms for crash injury severity prediction. Santos K; Dias JP; Amado C J Safety Res; 2022 Feb; 80():254-269. PubMed ID: 35249605 [TBL] [Abstract][Full Text] [Related]
20. Predicting hospitalization following psychiatric crisis care using machine learning. Blankers M; van der Post LFM; Dekker JJM BMC Med Inform Decis Mak; 2020 Dec; 20(1):332. PubMed ID: 33302948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]