These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36772248)

  • 1. Tool-Wear-Estimation System in Milling Using Multi-View CNN Based on Reflected Infrared Images.
    Jang WK; Kim DW; Seo YH; Kim BH
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Identification of Tool Wear Based on Thermography and a Convolutional Neural Network during the Turning Process.
    Brili N; Ficko M; Klančnik S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33803442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Identification of Tool Wear Based on Convolutional Neural Network in Face Milling Process.
    Wu X; Liu Y; Zhou X; Mou A
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31487810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tool Wear Monitoring in Milling Based on Fine-Grained Image Classification of Machined Surface Images.
    Yang J; Duan J; Li T; Hu C; Liang J; Shi T
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time-Frequency-Based Features and Deep Learning Models.
    Sayyad S; Kumar S; Bongale A; Kotecha K; Abraham A
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic Cutting Force Modeling with Comprehensively Considering Tool Edge Radius, Tool Flank Wear and Tool Runout in Micro-End Milling.
    Gao S; Duan X; Zhu K; Zhang Y
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of Tool Wear and Surface Roughness Development Using Deep Learning and Sensors Fusion.
    Huang PM; Lee CH
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision.
    Wei W; Yin J; Zhang J; Zhang H; Lu Z
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on In-Situ Tool Wear Detection during Micro End Milling Based on Machine Vision.
    Zhang X; Yu H; Li C; Yu Z; Xu J; Li Y; Yu H
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Multi-Task Learning Model with PSAE Network for Simultaneous Estimation of Surface Quality and Tool Wear in Milling of Nickel-Based Superalloy Haynes 230.
    Cheng M; Jiao L; Yan P; Gu H; Sun J; Qiu T; Wang X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the Tool Wear Suppression Mechanism in Non-Resonant Vibration-Assisted Micro Milling.
    Zheng L; Chen W; Huo D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling.
    Wiciak-Pikuła M; Felusiak-Czyryca A; Twardowski P
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tool Wear and Milling Characteristics for Hybrid Additive Manufacturing Combining Laser Powder Bed Fusion and In Situ High-Speed Milling.
    Sommer D; Pape D; Esen C; Hellmann R
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-Assisted High Speed Machining of 316 Stainless Steel: The Effect of Water-Soluble Sago Starch Based Cutting Fluid on Surface Roughness and Tool Wear.
    Yasmin F; Tamrin KF; Sheikh NA; Barroy P; Yassin A; Khan AA; Mohamaddan S
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33803364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Drill Bit Breakage Using an Infrared Sensor.
    Jeong MJ; Lee SW; Jang WK; Kim HJ; Seo YH; Kim BH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tool Condition Monitoring of the Cutting Capability of a Turning Tool Based on Thermography.
    Brili N; Ficko M; Klančnik S
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34641006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An online monitoring method of milling cutter wear condition driven by digital twin.
    Zi X; Gao S; Xie Y
    Sci Rep; 2024 Feb; 14(1):4956. PubMed ID: 38418504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cutting Performance of Different Coated Micro End Mills in Machining of Ti-6Al-4V.
    Liang Z; Gao P; Wang X; Li S; Zhou T; Xiang J
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30715067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroEye : A low-cost online tool wear monitoring system with modular 3D-printed components for micro-milling application.
    Christiand ; Kiswanto G; Baskoro AS; Hiltansyah F; Fitriawan MR; Putra RG; Putri SK; Ko TJ
    HardwareX; 2022 Apr; 11():e00269. PubMed ID: 35509945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the Tool Wear of a Drilling Process Using Novel Machine Learning XGBoost-SDA.
    Alajmi MS; Almeshal AM
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33158099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.