These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36772307)
1. A Smart System for an Assessment of the Remaining Useful Life of Ball Bearings by Applying Chaos-Based Health Indicators and a Self-Selective Regression Model. Li SY; Li HA; Tam LM; Chen CS Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772307 [TBL] [Abstract][Full Text] [Related]
2. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model. Yan M; Wang X; Wang B; Chang M; Muhammad I ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470 [TBL] [Abstract][Full Text] [Related]
3. An effective method for remaining useful life estimation of bearings with elbow point detection and adaptive regression models. Yan M; Xie L; Muhammad I; Yang X; Liu Y ISA Trans; 2022 Sep; 128(Pt A):290-300. PubMed ID: 34799099 [TBL] [Abstract][Full Text] [Related]
4. A Novel Method for Remaining Useful Life Prediction of Roller Bearings Involving the Discrepancy and Similarity of Degradation Trajectories. Luo H; Bo L; Liu X; Zhang H Comput Intell Neurosci; 2021; 2021():2500997. PubMed ID: 34899887 [TBL] [Abstract][Full Text] [Related]
5. Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient. Li Q; Yan C; Chen G; Wang H; Li H; Wu L ISA Trans; 2022 Oct; 129(Pt B):413-428. PubMed ID: 35181005 [TBL] [Abstract][Full Text] [Related]
6. Bearing Remaining Useful Life Prediction Based on Naive Bayes and Weibull Distributions. Zhang N; Wu L; Wang Z; Guan Y Entropy (Basel); 2018 Dec; 20(12):. PubMed ID: 33266668 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings. Kamat PV; Sugandhi R; Kumar S PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464 [TBL] [Abstract][Full Text] [Related]
8. Joint optimization of degradation assessment and remaining useful life prediction for bearings with temporal convolutional auto-encoder. Ding Y; Jia M; Zhao X; Yan X; Lee CG ISA Trans; 2024 Mar; 146():451-462. PubMed ID: 38320915 [TBL] [Abstract][Full Text] [Related]
9. A Multi-Featured Factor Analysis and Dynamic Window Rectification Method for Remaining Useful Life Prognosis of Rolling Bearings. Peng C; Zhao Y; Li C; Tang Z; Gui W Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998231 [TBL] [Abstract][Full Text] [Related]
10. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis. Hotait H; Chiementin X; Rasolofondraibe L Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610 [TBL] [Abstract][Full Text] [Related]
11. Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings. Zhang C; Zeng M; Fan J; Li X Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000911 [TBL] [Abstract][Full Text] [Related]
12. Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning. Wang Y; Li Y; Lu H; Wang D Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39283188 [TBL] [Abstract][Full Text] [Related]
13. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification. Yang J; Peng Y; Xie J; Wang P Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338 [TBL] [Abstract][Full Text] [Related]
14. Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction. Chen D; Qin Y; Wang Y; Zhou J ISA Trans; 2021 Aug; 114():44-56. PubMed ID: 33402262 [TBL] [Abstract][Full Text] [Related]
15. Multi-Sensor Vibration Signal Based Three-Stage Fault Prediction for Rotating Mechanical Equipment. Peng H; Li H; Zhang Y; Wang S; Gu K; Ren M Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205459 [TBL] [Abstract][Full Text] [Related]
16. Remaining useful life prognostics of bearings based on convolution attention networks and enhanced transformer. Sun N; Tang J; Ye X; Zhang C; Zhu S; Wang S; Sun Y Heliyon; 2024 Oct; 10(19):e38317. PubMed ID: 39416821 [TBL] [Abstract][Full Text] [Related]
17. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference. Peng C; Wu J; Wang Q; Gui W; Tang Z Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554221 [TBL] [Abstract][Full Text] [Related]
18. A Reliable Health Indicator for Fault Prognosis of Bearings. Duong BP; Khan SA; Shon D; Im K; Park J; Lim DS; Jang B; Kim JM Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400203 [TBL] [Abstract][Full Text] [Related]
19. The Performance Investigation of Smart Diagnosis for Bearings Using Mixed Chaotic Features with Fractional Order. Li SY; Tam LM; Wu SP; Tsai WL; Hu CW; Cheng LY; Xu YX; Cheng SC Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112141 [TBL] [Abstract][Full Text] [Related]
20. A remaining useful life prediction method based on PSR-former. Zhang H; Zhang S; Qiu L; Zhang Y; Wang Y; Wang Z; Yang G Sci Rep; 2022 Oct; 12(1):17887. PubMed ID: 36284229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]