These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36772307)
21. Data-Driven Method for Predicting Remaining Useful Life of Bearing Based on Bayesian Theory. Gao T; Li Y; Huang X; Wang C Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383918 [TBL] [Abstract][Full Text] [Related]
22. Rolling Bearing Remaining Useful Life Prediction Based on CNN-VAE-MBiLSTM. Yang L; Jiang Y; Zeng K; Peng T Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793847 [TBL] [Abstract][Full Text] [Related]
23. Machinery Prognostics and High-Dimensional Data Feature Extraction Based on a Transformer Self-Attention Transfer Network. Sun S; Peng T; Huang H Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005579 [TBL] [Abstract][Full Text] [Related]
24. University of Ferrara run-to-failure vibration dataset of self-aligning double-row ball bearings. Arpa L; Gabrielli A; Battarra M; Mucchi E Data Brief; 2024 Aug; 55():110620. PubMed ID: 39040557 [TBL] [Abstract][Full Text] [Related]
25. A data-driven prognostics method for explicit health index assessment and improved remaining useful life prediction of bearings. Bilendo F; Badihi H; Lu N; Jiang B ISA Trans; 2021 May; ():. PubMed ID: 33985788 [TBL] [Abstract][Full Text] [Related]
26. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics. Tse PW; Wang D Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28216586 [TBL] [Abstract][Full Text] [Related]
27. Smart Fault-Detection Machine for Ball-Bearing System with Chaotic Mapping Strategy. Li SY; Gu KR Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083448 [TBL] [Abstract][Full Text] [Related]
28. A knowledge-data integration framework for rolling element bearing RUL prediction across its life cycle. Yang L; Li T; Dong Y; Duan R; Liao Y ISA Trans; 2024 Sep; 152():331-357. PubMed ID: 38987043 [TBL] [Abstract][Full Text] [Related]
29. Remaining Useful Life Prognostics of Bearings Based on a Novel Spatial Graph-Temporal Convolution Network. Li P; Liu X; Yang Y Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205477 [TBL] [Abstract][Full Text] [Related]
30. Anomaly-informed remaining useful life estimation (AIRULE) of bearing machinery using deep learning framework. Kamat P; Kumar S; Patil S; Kotecha K MethodsX; 2024 Jun; 12():102555. PubMed ID: 38292312 [TBL] [Abstract][Full Text] [Related]
31. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network. Wang H; Yang J; Shi L; Wang R Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790 [TBL] [Abstract][Full Text] [Related]
32. An Outlier Cleaning Based Adaptive Recognition Method for Degradation Stage of Bearings. Xie J; Xie Y; Wang T; Xiao Y Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080939 [TBL] [Abstract][Full Text] [Related]
33. The Prediction of the Remaining Useful Life of Rotating Machinery Based on an Adaptive Maximum Second-Order Cyclostationarity Blind Deconvolution and a Convolutional LSTM Autoencoder. Gao Y; Ahmad Z; Kim JM Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38675999 [TBL] [Abstract][Full Text] [Related]
34. Method for Predicting RUL of Rolling Bearings under Different Operating Conditions Based on Transfer Learning and Few Labeled Data. Sun W; Wang H; Liu Z; Qu R Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616826 [TBL] [Abstract][Full Text] [Related]
35. Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life. Jiang JR; Lee JE; Zeng YM Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31888110 [TBL] [Abstract][Full Text] [Related]
36. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing. Yang C; Ma J; Wang X; Li X; Li Z; Luo T ISA Trans; 2022 Feb; 121():349-364. PubMed ID: 33845998 [TBL] [Abstract][Full Text] [Related]
37. Transfer-Learning-Based Estimation of the Remaining Useful Life of Heterogeneous Bearing Types Using Low-Frequency Accelerometers. Schwendemann S; Sikora A J Imaging; 2023 Feb; 9(2):. PubMed ID: 36826953 [TBL] [Abstract][Full Text] [Related]
38. Explainable AI for Bearing Fault Prognosis Using Deep Learning Techniques. Sanakkayala DC; Varadarajan V; Kumar N; Karan ; Soni G; Kamat P; Kumar S; Patil S; Kotecha K Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144094 [TBL] [Abstract][Full Text] [Related]
39. A novel feature extraction method for bearing fault classification with one dimensional ternary patterns. Kuncan M; Kaplan K; Mi Naz MR; Kaya Y; Ertunç HM ISA Trans; 2020 May; 100():346-357. PubMed ID: 31732141 [TBL] [Abstract][Full Text] [Related]
40. New Particle Filter Based on GA for Equipment Remaining Useful Life Prediction. Li K; Wu J; Zhang Q; Su L; Chen P Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28350341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]