These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36772432)

  • 1. Fuzzy Logic Controlled Simulation in Regulating Thermal Comfort and Indoor Air Quality Using a Vehicle Heating, Ventilation, and Air-Conditioning System.
    Rajeswari Subramaniam K; Cheng CT; Pang TY
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of air quality and energy consumption in the cabin of electric vehicles using system simulation.
    Lesage M; Chalet D; Migaud J; Krautner C
    J Environ Manage; 2024 May; 358():120861. PubMed ID: 38603848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air Quality and Comfort Characterisation within an Electric Vehicle Cabin in Heating and Cooling Operations.
    Russi L; Guidorzi P; Pulvirenti B; Aguiari D; Pau G; Semprini G
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Control of Air Conditioning Systems by Means of CO
    Muratori L; Peretto L; Pulvirenti B; Di Sante R; Bottiglieri G; Coiro F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneously reducing CO
    Jung HS; Grady ML; Victoroff T; Miller AL
    Atmos Environ (1994); 2017 Jul; 160():77-88. PubMed ID: 28781568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of optimum requirements for indoor air quality and energy consumption in some residences in Kuwait.
    Elkilani A; Bouhamra W
    Environ Int; 2001 Dec; 27(6):443-7. PubMed ID: 11800426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor air quality guidelines from across the world: An appraisal considering energy saving, health, productivity, and comfort.
    Dimitroulopoulou S; Dudzińska MR; Gunnarsen L; Hägerhed L; Maula H; Singh R; Toyinbo O; Haverinen-Shaughnessy U
    Environ Int; 2023 Aug; 178():108127. PubMed ID: 37544267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing thermal comfort prediction in high-speed trains through machine learning and physiological signals integration.
    Zhou W; Yang M; Yu X; Peng Y; Fan C; Xu D; Xiao Q
    J Therm Biol; 2024 Apr; 121():103828. PubMed ID: 38604115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vehicle carbon dioxide concentration in commuting cars in Bangkok, Thailand.
    Luangprasert M; Vasithamrong C; Pongratananukul S; Chantranuwathana S; Pumrin S; De Silva IP
    J Air Waste Manag Assoc; 2017 May; 67(5):623-633. PubMed ID: 27960651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of indoor levels of volatile organic compounds and carbon dioxide in schools in Kuwait.
    Al-Awadi L
    J Air Waste Manag Assoc; 2018 Jan; 68(1):54-72. PubMed ID: 28829721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building.
    Peng B; Hsieh SJ
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating machine learning models to classify occupants' perceptions of their indoor environment and sleep quality from indoor air quality.
    Fritz H; Tang M; Kinney K; Nagy Z
    J Air Waste Manag Assoc; 2022 Dec; 72(12):1381-1397. PubMed ID: 35939653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Thermal comfort and indoor air quality in some of the italian state police workplaces.].
    Chirico F; Rulli G
    G Ital Med Lav Ergon; 2017 Dec; 39(4):230-239. PubMed ID: 29916569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BIM and Data-Driven Predictive Analysis of Optimum Thermal Comfort for Indoor Environment.
    Gan VJL; Luo H; Tan Y; Deng M; Kwok HL
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic review and meta-analysis of indoor bioaerosols in hospitals: The influence of heating, ventilation, and air conditioning.
    Dai R; Liu S; Li Q; Wu H; Wu L; Ji C
    PLoS One; 2021; 16(12):e0259996. PubMed ID: 34941879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experiments and CFD simulation of an air-conditioned tractor cabin for thermal comfort of tractor operators in Pakistan.
    Riaz M; Mahmood MH; Ashraf MN; Sultan M; Sajjad U; Hamid K; Farooq M; Wang F
    Heliyon; 2023 Dec; 9(12):e23038. PubMed ID: 38149192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Objectives Optimization of Ventilation Controllers for Passive Cooling in Residential Buildings.
    Grygierek K; Ferdyn-Grygierek J
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Development of Internet of Things-Driven Fault Detection of Indoor Thermal Comfort: HVAC System Problems Case Study.
    Sahoh B; Kliangkhlao M; Kittiphattanabawon N
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].
    Bellucci Sessa R; Riccio G
    G Ital Med Lav Ergon; 2004; 26(4):375-81. PubMed ID: 15584448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.