These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36772490)

  • 21. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers.
    Tang M; Chen S; Wu J; Jiang Q; Dorogan VG; Benamara M; Mazur YI; Salamo GJ; Seeds A; Liu H
    Opt Express; 2014 May; 22(10):11528-35. PubMed ID: 24921274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures.
    Seravalli L; Trevisi G; Frigeri P; Franchi S; Geddo M; Guizzetti G
    Nanotechnology; 2009 Jul; 20(27):275703. PubMed ID: 19531853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors.
    Ma Y; Zhang Y; Gu Y; Chen X; Xi S; Du B; Li H
    Opt Express; 2015 Jul; 23(15):19278-87. PubMed ID: 26367589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of InGaAs/InAlAs Avalanche Photodiodes.
    Chen J; Zhang Z; Zhu M; Xu J; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):33. PubMed ID: 28091945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range.
    Dietz RJ; Globisch B; Roehle H; Stanze D; Göbel T; Schell M
    Opt Express; 2014 Aug; 22(16):19411-22. PubMed ID: 25321025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and composition profile of InAs/GaAs quantum dots capped by an InGaAs and InAlAs combination layer.
    He J; Wu Y; Wang KL
    Nanotechnology; 2010 Jun; 21(25):255705. PubMed ID: 20516585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. InGaAs/InAlAs multiple-quantum-well optical modulator integrated with a planar antenna for a millimeter-wave radio-over-fiber system.
    Miyazeki Y; Yokohashi H; Kodama S; Murata H; Arakawa T
    Opt Express; 2020 Apr; 28(8):11583-11596. PubMed ID: 32403666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy.
    Fujita K; Yamanishi M; Furuta S; Tanaka K; Edamura T; Kubis T; Klimeck G
    Opt Express; 2012 Aug; 20(18):20647-58. PubMed ID: 23037112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electro-optical effects in strain-compensated InGaAs/InAlAs coupled quantum wells with modified potential.
    Xu Z; Wang C; Qi W; Yuan Z
    Opt Lett; 2010 Mar; 35(5):736-8. PubMed ID: 20195336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Method for evaluating bow tie filter angle-dependent attenuation in CT: theory and simulation results.
    Boone JM
    Med Phys; 2010 Jan; 37(1):40-8. PubMed ID: 20175464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of potential well thickness on the carrier transport characteristics of InGaAs quantum dot laser diodes.
    Dong H; Jia Z; Jia W; Liang J; Wang Z; Xua B
    Phys Chem Chem Phys; 2022 Nov; 24(43):26708-26716. PubMed ID: 36305332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-powered broadband photo-detection and persistent energy generation with junction-free strained Bi
    Lorenzi B; Tsurimaki Y; Kobayashi A; Takashiri M; Boriskina SV
    Opt Express; 2020 Sep; 28(19):27644-27656. PubMed ID: 32988054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical and surface properties of the in doped GaAs layer deposition using thermionic vacuum arc method.
    Pat S; Özen S; Şenay V; Korkmaz Ş; Şimşek V
    Scanning; 2016 Jul; 38(4):297-302. PubMed ID: 26361240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semiconductor Bow-Tie Nanoantenna from Coupled Colloidal Quantum Dot Molecules.
    Cui J; Koley S; Panfil YE; Levi A; Waiskopf N; Remennik S; Oded M; Banin U
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14467-14472. PubMed ID: 33793047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers.
    Roehle H; Dietz RJ; Hensel HJ; Böttcher J; Künzel H; Stanze D; Schell M; Sartorius B
    Opt Express; 2010 Feb; 18(3):2296-301. PubMed ID: 20174058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of bow tie analysis and inherently safer design to the novel coronavirus hazard.
    Brown KR; VanBerkel P; Khan FI; Amyotte PR
    Process Saf Environ Prot; 2021 Aug; 152():701-718. PubMed ID: 34230775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetoelectric photocurrent generated by direct interband transitions in InGaAs/InAlAs two-dimensional electron gas.
    Dai J; Lu HZ; Yang CL; Shen SQ; Zhang FC; Cui X
    Phys Rev Lett; 2010 Jun; 104(24):246601. PubMed ID: 20867319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers.
    Yu Q; Bao X; Chen L
    Opt Lett; 2004 Jan; 29(1):17-9. PubMed ID: 14719646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of the Bow-Tie model in medication safety risk analysis: consecutive experience in two hospitals in the Netherlands.
    Wierenga PC; Lie-A-Huen L; de Rooij SE; Klazinga NS; Guchelaar HJ; Smorenburg SM
    Drug Saf; 2009; 32(8):663-73. PubMed ID: 19591531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.