These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36772497)

  • 1. Application of Feedforward and Recurrent Neural Networks for Fusion of Data from Radar and Depth Sensors Applied for Healthcare-Oriented Characterisation of Persons' Gait.
    Mazurek P
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting Walking Challenges in Gait Patterns Using a Capacitive Sensor Floor and Recurrent Neural Networks.
    Hoffmann R; Brodowski H; Steinhage A; Grzegorzek M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of Micro-Doppler Radar to Classify Gait Patterns of Young and Elderly Adults: An Approach Using a Long Short-Term Memory Network.
    Hayashi S; Saho K; Shioiri K; Fujimoto M; Masugi M
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Millimeter-Wave Array Radar-Based Human Gait Recognition Using Multi-Channel Three-Dimensional Convolutional Neural Network.
    Jiang X; Zhang Y; Yang Q; Deng B; Wang H
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal Convolutional Neural Networks for Radar Micro-Doppler Based Gait Recognition.
    Addabbo P; Bernardi ML; Biondi F; Cimitile M; Clemente C; Orlando D
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PGGait: Gait Recognition Based on Millimeter-Wave Radar Spatio-Temporal Sensing of Multidimensional Point Clouds.
    Dang X; Tang Y; Hao Z; Gao Y; Fan K; Wang Y
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait Speed Measurement using a Doppler Radar Sensor for In-Home Functional Capacity Tests.
    Alshamaa D; Chkeir A; Soubra R
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3424-3428. PubMed ID: 31946615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.
    Wang F; Skubic M; Rantz M; Cuddihy PE
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2434-43. PubMed ID: 24771566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of gait variations by using artificial neural networks.
    Guzelbulut C; Shimono S; Yonekura K; Suzuki K
    Biomed Eng Lett; 2022 Nov; 12(4):369-379. PubMed ID: 36238373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J; Han S; Park H; Cho HM; Hwang S; Park JW; Youn I
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Command Recognition Using Binarized Convolutional Neural Network with Voice and Radar Sensors for Human-Vehicle Interaction.
    Oh S; Bae C; Cho J; Lee S; Jung Y
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34198830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimate of gait speed by using persons' walk ratio or step-frequency in older adults.
    Lindemann U; Schwickert L; Becker C; Gross M; Nolte R; Klenk J
    Aging Clin Exp Res; 2021 Nov; 33(11):2989-2994. PubMed ID: 33778931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating an Adaptive and Robust Walking Pattern for a Prosthetic Ankle-Foot by Utilizing a Nonlinear Autoregressive Network With Exogenous Inputs.
    Kouzbary HA; Kouzbary MA; Tham LK; Liu J; Shasmin HN; Abu Osman NA
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6297-6305. PubMed ID: 33979293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Synthesized IMU Data to Train a Long-Short Term Memory-based Neural Network for Unobtrusive Gait Analysis with a Sparse Sensor Setup.
    Lueken M; Wenner J; Leonhardt S; Ngo C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3653-3656. PubMed ID: 36086654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of Gait Speed Estimation Using Wideband and Narrowband Radars, Thermal Camera, and Motion Tracking Suit Technologies.
    Morita PP; Rocha AS; Shaker G; Lee D; Wei J; Fong B; Thatte A; Karimi A; Xu L; Ma A; Wong A; Boger J
    J Healthc Inform Res; 2020 Sep; 4(3):215-237. PubMed ID: 35415448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Intelligence for the Evaluation of Postures Using Radar Technology: A Case Study.
    De Vittorio D; Barili A; Danese G; Marenzi E
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fault Diagnosis of the Autonomous Driving Perception System Based on Information Fusion.
    Hou W; Li W; Li P
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unifying obstacle detection, recognition, and fusion based on millimeter wave radar and RGB-depth sensors for the visually impaired.
    Long N; Wang K; Cheng R; Hu W; Yang K
    Rev Sci Instrum; 2019 Apr; 90(4):044102. PubMed ID: 31042998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.