These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36772497)

  • 41. Individualized Gait Generation for Rehabilitation Robots Based on Recurrent Neural Networks.
    Zhou Z; Liang B; Huang G; Liu B; Nong J; Xie L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():273-281. PubMed ID: 33332274
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radar image segmentation using self-adapting recurrent networks.
    Ziemke T
    Int J Neural Syst; 1997 Feb; 8(1):47-54. PubMed ID: 9228576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. User identification using gait patterns on UbiFloorII.
    Yun J
    Sensors (Basel); 2011; 11(3):2611-39. PubMed ID: 22163758
    [TBL] [Abstract][Full Text] [Related]  

  • 44. mm-Wave Radar-Based Vital Signs Monitoring and Arrhythmia Detection Using Machine Learning.
    Iyer S; Zhao L; Mohan MP; Jimeno J; Siyal MY; Alphones A; Karim MF
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elderly persons' perception and acceptance of using wireless sensor networks to assist healthcare.
    Steele R; Lo A; Secombe C; Wong YK
    Int J Med Inform; 2009 Dec; 78(12):788-801. PubMed ID: 19717335
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-Resolution Radar Target Recognition via Inception-Based VGG (IVGG) Networks.
    Wang W; Zhang C; Tian J; Wang X; Ou J; Zhang J; Li J
    Comput Intell Neurosci; 2020; 2020():8893419. PubMed ID: 32733549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimation of Lower Extremity Muscle Activity in Gait Using the Wearable Inertial Measurement Units and Neural Network.
    Khant M; Gouwanda D; Gopalai AA; Lim KH; Foong CC
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617154
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Novel Human Respiration Pattern Recognition Using Signals of Ultra-Wideband Radar Sensor.
    Kim SH; Geem ZW; Han GT
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Split BiRNN for real-time activity recognition using radar and deep learning.
    Werthen-Brabants L; Bhavanasi G; Couckuyt I; Dhaene T; Deschrijver D
    Sci Rep; 2022 May; 12(1):7436. PubMed ID: 35523811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Number and Angle Analysis in UWB Radar Deployment for Vital Sign Monitoring.
    Yu Y; Yang X; Qian H; Zhang X; Li L; Zhang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6069-6072. PubMed ID: 31947229
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.
    Hu B; Li S; Chen Y; Kavi R; Coppola S
    Appl Ergon; 2021 Oct; 96():103414. PubMed ID: 34087702
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of ground reaction force and joint moments based on optical motion capture data during gait.
    Mundt M; Koeppe A; David S; Bamer F; Potthast W; Markert B
    Med Eng Phys; 2020 Dec; 86():29-34. PubMed ID: 33261730
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gait episode identification based on wavelet feature clustering of spectrogram images.
    Yuwono M; Su SW; Moulton BD; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2949-52. PubMed ID: 23366543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radar Sensing for Activity Classification in Elderly People Exploiting Micro-Doppler Signatures Using Machine Learning.
    Taylor W; Dashtipour K; Shah SA; Hussain A; Abbasi QH; Imran MA
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Machine Learning Models for Enhanced Estimation of Soil Moisture Using Wideband Radar Sensor.
    Uthayakumar A; Mohan MP; Khoo EH; Jimeno J; Siyal MY; Karim MF
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward Unobtrusive In-Home Gait Analysis Based on Radar Micro-Doppler Signatures.
    Seifert AK; Amin MG; Zoubir AM
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2629-2640. PubMed ID: 30668460
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Basic gait analysis based on continuous wave radar.
    Zhang J
    Gait Posture; 2012 Sep; 36(4):667-71. PubMed ID: 22951210
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensor Fusion with NARX Neural Network to Predict the Mass Flow in a Sugarcane Harvester.
    Lima JJA; Maldaner LF; Molin JP
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34282796
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultra-Wideband Radar-Based Indoor Activity Monitoring for Elderly Care.
    Hämäläinen M; Mucchi L; Caputo S; Biotti L; Ciani L; Marabissi D; Patrizi G
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34063222
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.