These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36772634)

  • 1. Point Density Variations in Airborne Lidar Point Clouds.
    Petras V; Petrasova A; McCarter JB; Mitasova H; Meentemeyer RK
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparability of multi-temporal DTMs derived from different LiDAR platforms: Error sources and uncertainties in the application of geomorphic impact studies.
    Kamp N; Krenn P; Avian M; Sass O
    Earth Surf Process Landf; 2023 May; 48(6):1152-1175. PubMed ID: 38505513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airborne LiDAR point cloud classification using PointNet++ network with full neighborhood features.
    Nong X; Bai W; Liu G
    PLoS One; 2023; 18(2):e0280346. PubMed ID: 36763685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressing and Recovering Short-Range MEMS-Based LiDAR Point Clouds Based on Adaptive Clustered Compressive Sensing and Application to 3D Rock Fragment Surface Point Clouds.
    Li L; Wang H; Wang S
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data.
    Tarsha Kurdi F; Amakhchan W; Gharineiat Z; Boulaassal H; El Kharki O
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Country-wide data of ecosystem structure from the third Dutch airborne laser scanning survey.
    Kissling WD; Shi Y; Koma Z; Meijer C; Ku O; Nattino F; Seijmonsbergen AC; Grootes MW
    Data Brief; 2023 Feb; 46():108798. PubMed ID: 36569534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Comparison of UAS-Borne LiDAR Systems for High-Resolution Forested Wetland Mapping.
    Pricope NG; Halls JN; Mapes KL; Baxley JB; Wu JJ
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+.
    Leitold V; Keller M; Morton DC; Cook BD; Shimabukuro YE
    Carbon Balance Manag; 2015 Dec; 10(1):3. PubMed ID: 25685178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation and Design of Circular Scanning Airborne Geiger Mode Lidar for High-Resolution Topographic Mapping.
    Liu F; He Y; Chen W; Luo Y; Yu J; Chen Y; Jiao C; Liu M
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.
    Hamraz H; Contreras MA; Zhang J
    Sci Rep; 2017 Jul; 7(1):6770. PubMed ID: 28754898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm.
    Yan L; Tan J; Liu H; Xie H; Chen C
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28850100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multitemporal lidar captures heterogeneity in fuel loads and consumption on the Kaibab Plateau.
    Bright BC; Hudak AT; McCarley TR; Spannuth A; Sánchez-López N; Ottmar RD; Soja AJ
    Fire Ecol; 2022; 18(1):18. PubMed ID: 36017330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Registration of Laser Scanning Point Clouds: A Review.
    Cheng L; Chen S; Liu X; Xu H; Wu Y; Li M; Chen Y
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29883397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar.
    Kellner JR; Armston J; Birrer M; Cushman KC; Duncanson L; Eck C; Falleger C; Imbach B; Král K; Krůček M; Trochta J; Vrška T; Zgraggen C
    Surv Geophys; 2019; 40(4):959-977. PubMed ID: 31395993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing and correcting topographic effects on forest canopy height retrieval using airborne LiDAR data.
    Duan Z; Zhao D; Zeng Y; Zhao Y; Wu B; Zhu J
    Sensors (Basel); 2015 May; 15(6):12133-55. PubMed ID: 26016907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of LiDAR point cloud data in urban areas using adaptive neighborhood selection technique.
    Chakraborty D; Dey EK
    PLoS One; 2024; 19(7):e0307138. PubMed ID: 39024214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for extraction of airborne LiDAR point cloud buildings based on segmentation.
    Liu M; Shao Y; Li R; Wang Y; Sun X; Wang J; You Y
    PLoS One; 2020; 15(5):e0232778. PubMed ID: 32469887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Different LiDAR Technologies for the Documentation of Forgotten Cultural Heritage under Forest Environments.
    Maté-González MÁ; Di Pietra V; Piras M
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Point Cloud Recognition Based on a Multi-View Convolutional Neural Network.
    Zhang L; Sun J; Zheng Q
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.