BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36772638)

  • 1. Predicting Emotion with Biosignals: A Comparison of Classification and Regression Models for Estimating Valence and Arousal Level Using Wearable Sensors.
    Siirtola P; Tamminen S; Chandra G; Ihalapathirana A; Röning J
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Study of Arousal and Valence Dimensional Variations for Emotion Recognition Using Peripheral Physiological Signals Acquired from Wearable Sensors
    Alskafi FA; Khandoker AH; Jelinek HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1104-1107. PubMed ID: 34891480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LSTM-Modeling of Emotion Recognition Using Peripheral Physiological Signals in Naturalistic Conversations.
    Zitouni MS; Park CY; Lee U; Hadjileontiadis LJ; Khandoker A
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):912-923. PubMed ID: 36446009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding auditory-evoked response in affective states using wearable around-ear EEG system.
    Choi J; Kaongoen N; Choi H; Kim M; Kim BH; Jo S
    Biomed Phys Eng Express; 2023 Aug; 9(5):. PubMed ID: 37591224
    [No Abstract]   [Full Text] [Related]  

  • 5. Online Learning for Wearable EEG-Based Emotion Classification.
    Moontaha S; Schumann FEF; Arnrich B
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.
    Pinto J; Fred A; da Silva HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3577-3583. PubMed ID: 31946651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-based emotion classification using LSTM under new paradigm.
    Ahmed MZI; Sinha N
    Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34534973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multimodal Framework for Robustly Distinguishing among Similar Emotions using Wearable Sensors.
    Samyoun S; Mondol AS; Stankovic J
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4668-4671. PubMed ID: 36085654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable-based human flow experience recognition enhanced by transfer learning methods using emotion data.
    Irshad MT; Li F; Nisar MA; Huang X; Buss M; Kloep L; Peifer C; Kozusznik B; Pollak A; Pyszka A; Flak O; Grzegorzek M
    Comput Biol Med; 2023 Nov; 166():107489. PubMed ID: 37769461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CorrNet: Fine-Grained Emotion Recognition for Video Watching Using Wearable Physiological Sensors.
    Zhang T; El Ali A; Wang C; Hanjalic A; Cesar P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arousal-Valence Classification from Peripheral Physiological Signals Using Long Short-Term Memory Networks.
    Zitouni MS; Park CY; Lee U; Hadjileontiadis L; Khandoker A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():686-689. PubMed ID: 34891385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wearable In-Ear EEG Device for Emotion Monitoring.
    Athavipach C; Pan-Ngum S; Israsena P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management.
    Choi EJ; Kim DK
    Healthc Inform Res; 2018 Oct; 24(4):309-316. PubMed ID: 30443419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iHearken: Chewing sound signal analysis based food intake recognition system using Bi-LSTM softmax network.
    Khan MI; Acharya B; Chaurasiya RK
    Comput Methods Programs Biomed; 2022 Jun; 221():106843. PubMed ID: 35609358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-Based Emotion Classification Using Long Short-Term Memory Network with Attention Mechanism.
    Kim Y; Choi A
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video stimuli suitable for stress estimation based on biosignals.
    Ohata M; Togashi M; Chanpornpakdi I; Tanaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature selection for multimodal emotion recognition in the arousal-valence space.
    Torres CA; Orozco ÁA; Álvarez MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4330-3. PubMed ID: 24110691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tourist Experiences Recommender System Based on Emotion Recognition with Wearable Data.
    Santamaria-Granados L; Mendoza-Moreno JF; Chantre-Astaiza A; Munoz-Organero M; Ramirez-Gonzalez G
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.