These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36772651)

  • 1. A Perspective on Lifelong Open-Ended Learning Autonomy for Robotics through Cognitive Architectures.
    Romero A; Bellas F; Duro RJ
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual Generalization and Context in a Network Memory Inspired Long-Term Memory for Artificial Cognition.
    Duro RJ; Becerra JA; Monroy J; Bellas F
    Int J Neural Syst; 2019 Aug; 29(6):1850053. PubMed ID: 30614325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing autonomy through lifelong learning: a survey of autonomous intelligent systems.
    Zhu D; Bu Q; Zhu Z; Zhang Y; Wang Z
    Front Neurorobot; 2024; 18():1385778. PubMed ID: 38644905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A survey of ontology-enabled processes for dependable robot autonomy.
    Aguado E; Gomez V; Hernando M; Rossi C; Sanz R
    Front Robot AI; 2024; 11():1377897. PubMed ID: 39050488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural framework for organization and flexible utilization of episodic memory in cumulatively learning baby humanoids.
    Mohan V; Sandini G; Morasso P
    Neural Comput; 2014 Dec; 26(12):2692-734. PubMed ID: 25149699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continual lifelong learning with neural networks: A review.
    Parisi GI; Kemker R; Part JL; Kanan C; Wermter S
    Neural Netw; 2019 May; 113():54-71. PubMed ID: 30780045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-Ended Learning: A Conceptual Framework Based on Representational Redescription.
    Doncieux S; Filliat D; Díaz-Rodríguez N; Hospedales T; Duro R; Coninx A; Roijers DM; Girard B; Perrin N; Sigaud O
    Front Neurorobot; 2018; 12():59. PubMed ID: 30319388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model learning for robot control: a survey.
    Nguyen-Tuong D; Peters J
    Cogn Process; 2011 Nov; 12(4):319-40. PubMed ID: 21487784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning autonomy in two or three steps: linking open-ended development, authority, and agency to motivation.
    Andringa TC; van den Bosch KA; Vlaskamp C
    Front Psychol; 2013; 4():766. PubMed ID: 24155734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HiMoP: A three-component architecture to create more human-acceptable social-assistive robots : Motivational architecture for assistive robots.
    Rodríguez-Lera FJ; Matellán-Olivera V; Conde-González MÁ; Martín-Rico F
    Cogn Process; 2018 May; 19(2):233-244. PubMed ID: 29305760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Educational Robotics and Robot Creativity: An Interdisciplinary Dialogue.
    Gubenko A; Kirsch C; Smilek JN; Lubart T; Houssemand C
    Front Robot AI; 2021; 8():662030. PubMed ID: 34222352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Artificial Intelligence and Tactical Autonomy: Current Status, Challenges, and Perspectives.
    Hagos DH; Rawat DB
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Teaching robots social autonomy from in situ human guidance.
    Senft E; Lemaignan S; Baxter PE; Bartlett M; Belpaeme T
    Sci Robot; 2019 Oct; 4(35):. PubMed ID: 33137729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with
    Lomp O; Richter M; Zibner SK; Schöner G
    Front Neurorobot; 2016; 10():14. PubMed ID: 27853431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bio-inspired Motivational Decision Making System for Social Robots Based on the Perception of the User.
    Maroto-Gómez M; Castro-González Á; Castillo JC; Malfaz M; Salichs MA
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From the Dexterous Surgical Skill to the Battlefield-A Robotics Exploratory Study.
    Gonzalez GT; Kaur U; Rahman M; Venkatesh V; Sanchez N; Hager G; Xue Y; Voyles R; Wachs J
    Mil Med; 2021 Jan; 186(Suppl 1):288-294. PubMed ID: 33499518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.