These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36772897)

  • 1. Band Engineering of the Second Phase to Reach High Thermoelectric Performance in Cu
    Long Z; Wang Y; Sun X; Li Y; Zeng Z; Zhang L; Chen H
    Adv Mater; 2023 Apr; 35(17):e2210345. PubMed ID: 36772897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Modularization of Cu
    Zhao K; Zhu C; Zhu M; Chen H; Lei J; Ren Q; Wei TR; Qiu P; Xu F; Chen L; He J; Shi X
    Adv Mater; 2022 May; 34(19):e2108573. PubMed ID: 35293020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are Cu
    Zhao K; Liu K; Yue Z; Wang Y; Song Q; Li J; Guan M; Xu Q; Qiu P; Zhu H; Chen L; Shi X
    Adv Mater; 2019 Dec; 31(49):e1903480. PubMed ID: 31617626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-Efficient Synthesis and High Thermoelectric Performance of α-Cu
    Lin FH; Liu CJ
    ChemSusChem; 2021 Mar; 14(5):1316-1323. PubMed ID: 33400356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin-Deep Aspect of Thermopower in Bi
    Lee C; Park T; Shim JH; Whangbo MH
    Acc Chem Res; 2022 Oct; 55(19):2811-2820. PubMed ID: 36129235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-Tuning Bi
    Li L; Jia J; Shi C; Zeng W
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.
    Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu
    Yang D; Su X; Li J; Bai H; Wang S; Li Z; Tang H; Tang K; Luo T; Yan Y; Wu J; Yang J; Zhang Q; Uher C; Kanatzidis MG; Tang X
    Adv Mater; 2020 Oct; 32(40):e2003730. PubMed ID: 32875625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of thermoelectric performance of copper-deficient compounds Cu
    Ren T; Ying P; Cai G; Li X; Han Z; Min L; Cui J
    RSC Adv; 2018 Jul; 8(48):27163-27170. PubMed ID: 35539978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promising and Eco-Friendly Cu
    Liu WD; Yang L; Chen ZG; Zou J
    Adv Mater; 2020 Feb; 32(8):e1905703. PubMed ID: 31944453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb
    An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Industrial-Grade p-Type (Bi,Sb)
    Zhang Q; Yuan M; Pang K; Zhang Y; Wang R; Tan X; Wu G; Hu H; Wu J; Sun P; Liu GQ; Jiang J
    Adv Mater; 2023 May; 35(21):e2300338. PubMed ID: 36862991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation.
    Shuai J; Geng H; Lan Y; Zhu Z; Wang C; Liu Z; Bao J; Chu CW; Sui J; Ren Z
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):E4125-32. PubMed ID: 27385824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric Performance of Surface-Engineered Cu
    Xing C; Zhang Y; Xiao K; Han X; Liu Y; Nan B; Ramon MG; Lim KH; Li J; Arbiol J; Poudel B; Nozariasbmarz A; Li W; Ibáñez M; Cabot A
    ACS Nano; 2023 May; 17(9):8442-8452. PubMed ID: 37071412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaching Topological Insulating States Leads to High Thermoelectric Performance in n-Type PbTe.
    Xiao Y; Wang D; Qin B; Wang J; Wang G; Zhao LD
    J Am Chem Soc; 2018 Oct; 140(40):13097-13102. PubMed ID: 30212199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu
    Mallick MM; Franke L; Rösch AG; Ahmad S; Geßwein H; Eggeler YM; Rohde M; Lemmer U
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61386-61395. PubMed ID: 34910878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic Effect of Work Function and Acoustic Impedance Mismatch for Improved Thermoelectric Performance in GeTe-WC Composite.
    Kumar A; Bhumla P; Kosonowski A; Wolski K; Zapotoczny S; Bhattacharya S; Wojciechowski KT
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44527-44538. PubMed ID: 36128960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excellent thermoelectric properties of monolayer RbAgM (M = Se and Te): first-principles calculations.
    Gu J; Qu X
    Phys Chem Chem Phys; 2020 Nov; 22(45):26364-26371. PubMed ID: 33179657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Thermoelectric Performance in Nonstoichiometric Cu
    Song Q; Qiu P; Chen H; Zhao K; Ren D; Shi X; Chen L
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10123-10131. PubMed ID: 29498257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Figure-of-Merit Telluride-Based Flexible Thermoelectric Films through Interfacial Modification via Millisecond Photonic-Curing for Fully Printed Thermoelectric Generators.
    Mallick MM; Franke L; Rösch AG; Geßwein H; Long Z; Eggeler YM; Lemmer U
    Adv Sci (Weinh); 2022 Nov; 9(31):e2202411. PubMed ID: 36106362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.