BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 36773141)

  • 1. Generation of Knock-In Mouse by Genome Editing.
    Fujii W
    Methods Mol Biol; 2023; 2637():99-109. PubMed ID: 36773141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Knock-in Mouse by Genome Editing.
    Fujii W
    Methods Mol Biol; 2017; 1630():91-100. PubMed ID: 28643252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 Endonuclease-Mediated Mouse Genome Editing of One-Cell and/or Two-Cell Embryos by Electroporation, and the Use of Rad51 to Enhance Knock-In Allele Homozygosity via Interhomolog Repair Mechanism.
    Garza S; Paik R
    Methods Mol Biol; 2023; 2631():253-266. PubMed ID: 36995671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Transgenic Mice Using CRISPR /Cas9 Technology.
    El Marjou F; Jouhanneau C; Krndija D
    Methods Mol Biol; 2021; 2214():125-141. PubMed ID: 32944907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zygote Microinjection for Creating Gene Cassette Knock-in and Flox Alleles in Mice.
    Tanimoto Y; Mikami N; Ishida M; Iki N; Kato K; Sugiyama F; Takahashi S; Mizuno S
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35815994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells.
    Sun JJ; Ray R
    PLoS One; 2016; 11(7):e0159474. PubMed ID: 27441631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient production of large deletion and gene fragment knock-in mice mediated by genome editing with Cas9-mouse Cdt1 in mouse zygotes.
    Mizuno-Iijima S; Ayabe S; Kato K; Matoba S; Ikeda Y; Dinh TTH; Le HT; Suzuki H; Nakashima K; Hasegawa Y; Hamada Y; Tanimoto Y; Daitoku Y; Iki N; Ishida M; Ibrahim EAE; Nakashiba T; Hamada M; Murata K; Miwa Y; Okada-Iwabu M; Iwabu M; Yagami KI; Ogura A; Obata Y; Takahashi S; Mizuno S; Yoshiki A; Sugiyama F
    Methods; 2021 Jul; 191():23-31. PubMed ID: 32334080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroporation and genetic supply of Cas9 increase the generation efficiency of CRISPR/Cas9 knock-in alleles in C57BL/6J mouse zygotes.
    Alghadban S; Bouchareb A; Hinch R; Hernandez-Pliego P; Biggs D; Preece C; Davies B
    Sci Rep; 2020 Oct; 10(1):17912. PubMed ID: 33087834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes.
    Yoshimi K; Kunihiro Y; Kaneko T; Nagahora H; Voigt B; Mashimo T
    Nat Commun; 2016 Jan; 7():10431. PubMed ID: 26786405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing.
    Hashimoto M; Takemoto T
    Sci Rep; 2015 Jun; 5():11315. PubMed ID: 26066060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient simultaneous double DNA knock-in in murine embryonic stem cells by CRISPR/Cas9 ribonucleoprotein-mediated circular plasmid targeting for generating gene-manipulated mice.
    Ozawa M; Taguchi J; Katsuma K; Ishikawa-Yamauchi Y; Kikuchi M; Sakamoto R; Yamada Y; Ikawa M
    Sci Rep; 2022 Dec; 12(1):21558. PubMed ID: 36513736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translating human genetics into mouse: the impact of ultra-rapid in vivo genome editing.
    Aida T; Imahashi R; Tanaka K
    Dev Growth Differ; 2014 Jan; 56(1):34-45. PubMed ID: 24444057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein.
    Dewari PS; Southgate B; Mccarten K; Monogarov G; O'Duibhir E; Quinn N; Tyrer A; Leitner MC; Plumb C; Kalantzaki M; Blin C; Finch R; Bressan RB; Morrison G; Jacobi AM; Behlke MA; von Kriegsheim A; Tomlinson S; Krijgsveld J; Pollard SM
    Elife; 2018 Apr; 7():. PubMed ID: 29638216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optimized Preparation Method for Long ssDNA Donors to Facilitate Quick Knock-In Mouse Generation.
    Inoue YU; Morimoto Y; Yamada M; Kaneko R; Shimaoka K; Oki S; Hotta M; Asami J; Koike E; Hori K; Hoshino M; Imayoshi I; Inoue T
    Cells; 2021 Apr; 10(5):. PubMed ID: 33946570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Generation of Genome-Modified Mice Using Campylobacter jejuni-Derived CRISPR/Cas.
    Fujii W; Ikeda A; Sugiura K; Naito K
    Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29088065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Otoferlin gene editing in sheep via CRISPR-assisted ssODN-mediated Homology Directed Repair.
    Menchaca A; Dos Santos-Neto PC; Souza-Neves M; Cuadro F; Mulet AP; Tesson L; Chenouard V; Guiffès A; Heslan JM; Gantier M; Anegón I; Crispo M
    Sci Rep; 2020 Apr; 10(1):5995. PubMed ID: 32265471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. i-GONAD: A method for generating genome-edited animals without ex vivo handling of embryos.
    Ohtsuka M; Sato M
    Dev Growth Differ; 2019 Jun; 61(5):306-315. PubMed ID: 31198998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Large Fragment Knock-In Mouse Models by Microinjecting into 2-Cell Stage Embryos.
    Gu B; Gertsenstein M; Posfai E
    Methods Mol Biol; 2020; 2066():89-100. PubMed ID: 31512209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-Mediated Highly Efficient Gene Targeting in Embryonic Stem Cells for Developing Gene-Manipulated Mouse Models.
    Ozawa M; Emori C; Ikawa M
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.