BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36773162)

  • 21. Targeting endogenous proteins for spatial and temporal knockdown using auxin-inducible degron in Caenorhabditis elegans.
    Kurashina M; Mizumoto K
    STAR Protoc; 2023 Mar; 4(1):102028. PubMed ID: 36640369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Streptothricin acetyl transferase 2 (Sat2): A dominant selection marker for Caenorhabditis elegans genome editing.
    Obinata H; Sugimoto A; Niwa S
    PLoS One; 2018; 13(5):e0197128. PubMed ID: 29742140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system.
    Zhao P; Zhang Z; Ke H; Yue Y; Xue D
    Cell Res; 2014 Feb; 24(2):247-50. PubMed ID: 24418757
    [No Abstract]   [Full Text] [Related]  

  • 24. CRISPR-Cas9 human gene replacement and phenomic characterization in
    McDiarmid TA; Au V; Loewen AD; Liang J; Mizumoto K; Moerman DG; Rankin CH
    Dis Model Mech; 2018 Nov; 11(12):. PubMed ID: 30361258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans.
    Kim H; Ishidate T; Ghanta KS; Seth M; Conte D; Shirayama M; Mello CC
    Genetics; 2014 Aug; 197(4):1069-80. PubMed ID: 24879462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseases.
    Zamanian M; Andersen EC
    FEBS J; 2016 Sep; 283(17):3204-21. PubMed ID: 27300487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Genome Editing in Caenorhabditis elegans with a Toolkit of Dual-Marker Selection Cassettes.
    Norris AD; Kim HM; Colaiácovo MP; Calarco JA
    Genetics; 2015 Oct; 201(2):449-58. PubMed ID: 26232410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9 Genome Editing in Caenorhabditis elegans: Evaluation of Templates for Homology-Mediated Repair and Knock-Ins by Homology-Independent DNA Repair.
    Katic I; Xu L; Ciosk R
    G3 (Bethesda); 2015 Jun; 5(8):1649-56. PubMed ID: 26044730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system.
    Tzur YB; Friedland AE; Nadarajan S; Church GM; Calarco JA; Colaiácovo MP
    Genetics; 2013 Nov; 195(3):1181-5. PubMed ID: 23979579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas.
    Chiu H; Schwartz HT; Antoshechkin I; Sternberg PW
    Genetics; 2013 Nov; 195(3):1167-71. PubMed ID: 23979577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-step homozygosity in precise gene editing by an improved CRISPR/Cas9 system.
    Zhao P; Zhang Z; Lv X; Zhao X; Suehiro Y; Jiang Y; Wang X; Mitani S; Gong H; Xue D
    Cell Res; 2016 May; 26(5):633-6. PubMed ID: 27055372
    [No Abstract]   [Full Text] [Related]  

  • 32.
    Philip NS; Escobedo F; Bahr LL; Berry BJ; Wojtovich AP
    G3 (Bethesda); 2019 Aug; 9(8):2629-2635. PubMed ID: 31186306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melting dsDNA Donor Molecules Greatly Improves Precision Genome Editing in
    Ghanta KS; Mello CC
    Genetics; 2020 Nov; 216(3):643-650. PubMed ID: 32963112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exciting prospects for precise engineering of Caenorhabditis elegans genomes with CRISPR/Cas9.
    Frøkjær-Jensen C
    Genetics; 2013 Nov; 195(3):635-42. PubMed ID: 24190921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient CRISPR/Cas9 mediated large insertions using long single-stranded oligonucleotide donors in C. elegans.
    Eroglu M; Yu B; Derry WB
    FEBS J; 2023 Sep; 290(18):4429-4439. PubMed ID: 37254814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene activation in Caenorhabditis elegans using the Campylobacter jejuni CRISPR-Cas9 feeding system.
    Luo Z; Dai W; Wang C; Ye Q; Zhou Q; Wan QL
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35377421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Generation of Endogenous Fluorescent Reporters by Nested CRISPR in
    Vicencio J; Martínez-Fernández C; Serrat X; Cerón J
    Genetics; 2019 Apr; 211(4):1143-1154. PubMed ID: 30696716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NATF (Native and Tissue-Specific Fluorescence): A Strategy for Bright, Tissue-Specific GFP Labeling of Native Proteins in
    He S; Cuentas-Condori A; Miller DM
    Genetics; 2019 Jun; 212(2):387-395. PubMed ID: 30952669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted Chromosomal Rearrangements via Combinatorial Use of CRISPR/Cas9 and Cre/
    Chen X; Liao S; Huang X; Xu T; Feng X; Guang S
    G3 (Bethesda); 2018 Jul; 8(8):2697-2707. PubMed ID: 29950430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9: A new tool for the study and control of helminth parasites.
    Du X; McManus DP; French JD; Jones MK; You H
    Bioessays; 2021 Jan; 43(1):e2000185. PubMed ID: 33145822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.